ynat
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4226
- Accuracy: 0.8605
- Precision: 0.8533
- Recall: 0.8703
- F1: 0.8610
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.2138 | 1.0 | 714 | 0.4986 | 0.8425 | 0.8326 | 0.8645 | 0.8465 |
| 0.2284 | 2.0 | 1428 | 0.4226 | 0.8605 | 0.8533 | 0.8703 | 0.8610 |
| 0.1541 | 3.0 | 2142 | 0.4701 | 0.8585 | 0.8487 | 0.8686 | 0.8582 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- -
Model tree for ssanna/ynat
Base model
monologg/koelectra-base-v3-discriminator