Spaces:
Runtime error
Runtime error
| ### 1. Imports and class names setup ### | |
| import gradio as gr | |
| import os | |
| import torch | |
| from model import create_vggface2_model | |
| from timeit import default_timer as timer | |
| from typing import Tuple, Dict | |
| # Setup class names | |
| class_names = ["real", "spoof"] | |
| ### 2. Model and transforms preparation ### | |
| # Create EffNetB2 model | |
| vggface2, data_transform = create_vggface2_model( | |
| num_classes=2, # len(class_names) would also work | |
| ) | |
| # Load saved weights | |
| vggface2.load_state_dict( | |
| torch.load( | |
| f="01_pretrained_vggface2_anti_spoof_18_3_11_2_2023_facenet.pth", | |
| map_location=torch.device("cpu"), # load to CPU | |
| ) | |
| ) | |
| ### 3. Predict function ### | |
| # Create predict function | |
| def predict(img):# -> Tuple[Dict, float]: | |
| """Transforms and performs a prediction on img and returns prediction and time taken. | |
| """ | |
| # Start the timer | |
| start_time = timer() | |
| # Transform the target image and add a batch dimension | |
| img = data_transform(img).unsqueeze(0) | |
| # Put model into evaluation mode and turn on inference mode | |
| vggface2.eval() | |
| with torch.inference_mode(): | |
| # Pass the transformed image through the model and turn the prediction logits into prediction probabilities | |
| pred_probs = torch.softmax(vggface2(img), dim=1) | |
| # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) | |
| pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
| # Calculate the prediction time | |
| pred_time = round(timer() - start_time, 5) | |
| # Return the prediction dictionary and prediction time | |
| return pred_labels_and_probs, pred_time | |
| ### 4. Gradio app ### | |
| # Create title, description and article strings | |
| title = 'Liveness Detection System 🤖' | |
| description = 'A vggface2 pretrained computer vision model to classify images as spoof or real.' | |
| article = 'Prototype 1 for detecting liveness in an image' | |
| # Create examples list from "examples/" directory | |
| example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| # Create the Gradio demo | |
| demo = gr.Interface(fn=predict, #mapping function from input to output | |
| inputs=gr.Image(type='pil'), #what are my inputs? | |
| outputs=[gr.Label(num_top_classes=2, label= 'Predictions'), #what are my outputs? | |
| gr.Number(label='Prediction time(s)')], #our fn has 2 outputs | |
| examples=example_list, | |
| title=title, | |
| description=description, | |
| article=article) | |
| #Launch the demo! | |
| demo.launch() | |