nraffa's picture
device agnostic code taken out
15865f6
### 1. Imports and class names setup ###
import gradio as gr
import os
import torch
from model import create_vggface2_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# Setup class names
class_names = ["real", "spoof"]
### 2. Model and transforms preparation ###
# Create EffNetB2 model
vggface2, data_transform = create_vggface2_model(
num_classes=2, # len(class_names) would also work
)
# Load saved weights
vggface2.load_state_dict(
torch.load(
f="01_pretrained_vggface2_anti_spoof_18_3_11_2_2023_facenet.pth",
map_location=torch.device("cpu"), # load to CPU
)
)
### 3. Predict function ###
# Create predict function
def predict(img):# -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
start_time = timer()
# Transform the target image and add a batch dimension
img = data_transform(img).unsqueeze(0)
# Put model into evaluation mode and turn on inference mode
vggface2.eval()
with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax(vggface2(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
### 4. Gradio app ###
# Create title, description and article strings
title = 'Liveness Detection System 🤖'
description = 'A vggface2 pretrained computer vision model to classify images as spoof or real.'
article = 'Prototype 1 for detecting liveness in an image'
# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn=predict, #mapping function from input to output
inputs=gr.Image(type='pil'), #what are my inputs?
outputs=[gr.Label(num_top_classes=2, label= 'Predictions'), #what are my outputs?
gr.Number(label='Prediction time(s)')], #our fn has 2 outputs
examples=example_list,
title=title,
description=description,
article=article)
#Launch the demo!
demo.launch()