nraffa commited on
Commit
15865f6
·
1 Parent(s): 09dcd4c

device agnostic code taken out

Browse files
Files changed (2) hide show
  1. app.py +1 -4
  2. model.py +1 -3
app.py CHANGED
@@ -10,9 +10,6 @@ from typing import Tuple, Dict
10
  # Setup class names
11
  class_names = ["real", "spoof"]
12
 
13
- # Setup device-agnostic code
14
- device = "cuda" if torch.cuda.is_available() else "cpu"
15
-
16
  ### 2. Model and transforms preparation ###
17
 
18
  # Create EffNetB2 model
@@ -38,7 +35,7 @@ def predict(img):# -> Tuple[Dict, float]:
38
  start_time = timer()
39
 
40
  # Transform the target image and add a batch dimension
41
- img = data_transform(img).unsqueeze(0).to(device)
42
 
43
  # Put model into evaluation mode and turn on inference mode
44
  vggface2.eval()
 
10
  # Setup class names
11
  class_names = ["real", "spoof"]
12
 
 
 
 
13
  ### 2. Model and transforms preparation ###
14
 
15
  # Create EffNetB2 model
 
35
  start_time = timer()
36
 
37
  # Transform the target image and add a batch dimension
38
+ img = data_transform(img).unsqueeze(0)
39
 
40
  # Put model into evaluation mode and turn on inference mode
41
  vggface2.eval()
model.py CHANGED
@@ -19,7 +19,7 @@ def create_vggface2_model(num_classes:int=2,
19
  transforms (torchvision.transforms): vggface2 image transforms.
20
  """
21
  # load the saved model
22
- model_pred = InceptionResnetV1(pretrained='vggface2' , classify = True , num_classes = 2).to(device)
23
  layer_list = list(model_pred.children())[-5:] # all final layers
24
  model_pred = nn.Sequential(*list(model_pred.children())[:-5])
25
 
@@ -43,8 +43,6 @@ def create_vggface2_model(num_classes:int=2,
43
  out_features=2, # same number of output units as our number of classes
44
  bias=True))
45
 
46
- model_pred = model_pred.to(device)
47
-
48
  # Write transform for image
49
  data_transform = transforms.Compose([
50
  # Resize the images to 64x64 --> RECOMENDATION FROM TRAINING FROM FACENET --> 160x160
 
19
  transforms (torchvision.transforms): vggface2 image transforms.
20
  """
21
  # load the saved model
22
+ model_pred = InceptionResnetV1(pretrained='vggface2' , classify = True , num_classes = 2)
23
  layer_list = list(model_pred.children())[-5:] # all final layers
24
  model_pred = nn.Sequential(*list(model_pred.children())[:-5])
25
 
 
43
  out_features=2, # same number of output units as our number of classes
44
  bias=True))
45
 
 
 
46
  # Write transform for image
47
  data_transform = transforms.Compose([
48
  # Resize the images to 64x64 --> RECOMENDATION FROM TRAINING FROM FACENET --> 160x160