Spaces:
Runtime error
Runtime error
File size: 7,118 Bytes
8a97291 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
#!/usr/bin/env python3
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC
import soundfile as sf
import numpy as np
CODE_START_TOKEN_ID = 128257
CODE_END_TOKEN_ID = 128258
CODE_TOKEN_OFFSET = 128266
SNAC_MIN_ID = 128266
SNAC_MAX_ID = 156937
SNAC_TOKENS_PER_FRAME = 7
SOH_ID = 128259
EOH_ID = 128260
SOA_ID = 128261
BOS_ID = 128000
TEXT_EOT_ID = 128009
def build_prompt(tokenizer, description: str, text: str) -> str:
"""Build formatted prompt for Maya1."""
soh_token = tokenizer.decode([SOH_ID])
eoh_token = tokenizer.decode([EOH_ID])
soa_token = tokenizer.decode([SOA_ID])
sos_token = tokenizer.decode([CODE_START_TOKEN_ID])
eot_token = tokenizer.decode([TEXT_EOT_ID])
bos_token = tokenizer.bos_token
formatted_text = f'<description="{description}"> {text}'
prompt = (
soh_token + bos_token + formatted_text + eot_token +
eoh_token + soa_token + sos_token
)
return prompt
def extract_snac_codes(token_ids: list) -> list:
"""Extract SNAC codes from generated tokens."""
try:
eos_idx = token_ids.index(CODE_END_TOKEN_ID)
except ValueError:
eos_idx = len(token_ids)
snac_codes = [
token_id for token_id in token_ids[:eos_idx]
if SNAC_MIN_ID <= token_id <= SNAC_MAX_ID
]
return snac_codes
def unpack_snac_from_7(snac_tokens: list) -> list:
"""Unpack 7-token SNAC frames to 3 hierarchical levels."""
if snac_tokens and snac_tokens[-1] == CODE_END_TOKEN_ID:
snac_tokens = snac_tokens[:-1]
frames = len(snac_tokens) // SNAC_TOKENS_PER_FRAME
snac_tokens = snac_tokens[:frames * SNAC_TOKENS_PER_FRAME]
if frames == 0:
return [[], [], []]
l1, l2, l3 = [], [], []
for i in range(frames):
slots = snac_tokens[i*7:(i+1)*7]
l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
l2.extend([
(slots[1] - CODE_TOKEN_OFFSET) % 4096,
(slots[4] - CODE_TOKEN_OFFSET) % 4096,
])
l3.extend([
(slots[2] - CODE_TOKEN_OFFSET) % 4096,
(slots[3] - CODE_TOKEN_OFFSET) % 4096,
(slots[5] - CODE_TOKEN_OFFSET) % 4096,
(slots[6] - CODE_TOKEN_OFFSET) % 4096,
])
return [l1, l2, l3]
def main():
# Load the best open source voice AI model
print("\n[1/3] Loading Maya1 model...")
model = AutoModelForCausalLM.from_pretrained(
"maya-research/maya1",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"maya-research/maya1",
trust_remote_code=True
)
print(f"Model loaded: {len(tokenizer)} tokens in vocabulary")
# Load SNAC audio decoder (24kHz)
print("\n[2/3] Loading SNAC audio decoder...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
if torch.cuda.is_available():
snac_model = snac_model.to("cuda")
print("SNAC decoder loaded")
# Design your voice with natural language
description = "Realistic male voice in the 30s age with american accent. Normal pitch, warm timbre, conversational pacing."
text = "Hello! This is Maya1 <laugh_harder> the best open source voice AI model with emotions."
print("\n[3/3] Generating speech...")
print(f"Description: {description}")
print(f"Text: {text}")
# Create prompt with proper formatting
prompt = build_prompt(tokenizer, description, text)
# Debug: Show prompt details
print(f"\nPrompt preview (first 200 chars):")
print(f" {repr(prompt[:200])}")
print(f" Prompt length: {len(prompt)} chars")
# Generate emotional speech
inputs = tokenizer(prompt, return_tensors="pt")
print(f" Input token count: {inputs['input_ids'].shape[1]} tokens")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=2048, # Increase to let model finish naturally
min_new_tokens=28, # At least 4 SNAC frames
temperature=0.4,
top_p=0.9,
repetition_penalty=1.1, # Prevent loops
do_sample=True,
eos_token_id=CODE_END_TOKEN_ID, # Stop at end of speech token
pad_token_id=tokenizer.pad_token_id,
)
# Extract generated tokens (everything after the input prompt)
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
print(f"Generated {len(generated_ids)} tokens")
# Debug: Check what tokens we got
print(f" First 20 tokens: {generated_ids[:20]}")
print(f" Last 20 tokens: {generated_ids[-20:]}")
# Check if EOS was generated
if CODE_END_TOKEN_ID in generated_ids:
eos_position = generated_ids.index(CODE_END_TOKEN_ID)
print(f" EOS token found at position {eos_position}/{len(generated_ids)}")
# Extract SNAC audio tokens
snac_tokens = extract_snac_codes(generated_ids)
print(f"Extracted {len(snac_tokens)} SNAC tokens")
# Debug: Analyze token types
snac_count = sum(1 for t in generated_ids if SNAC_MIN_ID <= t <= SNAC_MAX_ID)
other_count = sum(1 for t in generated_ids if t < SNAC_MIN_ID or t > SNAC_MAX_ID)
print(f" SNAC tokens in output: {snac_count}")
print(f" Other tokens in output: {other_count}")
# Check for SOS token
if CODE_START_TOKEN_ID in generated_ids:
sos_pos = generated_ids.index(CODE_START_TOKEN_ID)
print(f" SOS token at position: {sos_pos}")
else:
print(f" No SOS token found in generated output!")
if len(snac_tokens) < 7:
print("Error: Not enough SNAC tokens generated")
return
# Unpack SNAC tokens to 3 hierarchical levels
levels = unpack_snac_from_7(snac_tokens)
frames = len(levels[0])
print(f"Unpacked to {frames} frames")
print(f" L1: {len(levels[0])} codes")
print(f" L2: {len(levels[1])} codes")
print(f" L3: {len(levels[2])} codes")
# Convert to tensors
device = "cuda" if torch.cuda.is_available() else "cpu"
codes_tensor = [
torch.tensor(level, dtype=torch.long, device=device).unsqueeze(0)
for level in levels
]
# Generate final audio with SNAC decoder
print("\n[4/4] Decoding to audio...")
with torch.inference_mode():
z_q = snac_model.quantizer.from_codes(codes_tensor)
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
# Trim warmup samples (first 2048 samples)
if len(audio) > 2048:
audio = audio[2048:]
duration_sec = len(audio) / 24000
print(f"Audio generated: {len(audio)} samples ({duration_sec:.2f}s)")
# Save your emotional voice output
output_file = "output.wav"
sf.write(output_file, audio, 24000)
print(f"\nVoice generated successfully!")
if __name__ == "__main__":
main()
|