Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
from snac import SNAC
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
CODE_START_TOKEN_ID = 128257
|
| 10 |
+
CODE_END_TOKEN_ID = 128258
|
| 11 |
+
CODE_TOKEN_OFFSET = 128266
|
| 12 |
+
SNAC_MIN_ID = 128266
|
| 13 |
+
SNAC_MAX_ID = 156937
|
| 14 |
+
SNAC_TOKENS_PER_FRAME = 7
|
| 15 |
+
|
| 16 |
+
SOH_ID = 128259
|
| 17 |
+
EOH_ID = 128260
|
| 18 |
+
SOA_ID = 128261
|
| 19 |
+
BOS_ID = 128000
|
| 20 |
+
TEXT_EOT_ID = 128009
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def build_prompt(tokenizer, description: str, text: str) -> str:
|
| 24 |
+
"""Build formatted prompt for Maya1."""
|
| 25 |
+
soh_token = tokenizer.decode([SOH_ID])
|
| 26 |
+
eoh_token = tokenizer.decode([EOH_ID])
|
| 27 |
+
soa_token = tokenizer.decode([SOA_ID])
|
| 28 |
+
sos_token = tokenizer.decode([CODE_START_TOKEN_ID])
|
| 29 |
+
eot_token = tokenizer.decode([TEXT_EOT_ID])
|
| 30 |
+
bos_token = tokenizer.bos_token
|
| 31 |
+
|
| 32 |
+
formatted_text = f'<description="{description}"> {text}'
|
| 33 |
+
|
| 34 |
+
prompt = (
|
| 35 |
+
soh_token + bos_token + formatted_text + eot_token +
|
| 36 |
+
eoh_token + soa_token + sos_token
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
return prompt
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def extract_snac_codes(token_ids: list) -> list:
|
| 43 |
+
"""Extract SNAC codes from generated tokens."""
|
| 44 |
+
try:
|
| 45 |
+
eos_idx = token_ids.index(CODE_END_TOKEN_ID)
|
| 46 |
+
except ValueError:
|
| 47 |
+
eos_idx = len(token_ids)
|
| 48 |
+
|
| 49 |
+
snac_codes = [
|
| 50 |
+
token_id for token_id in token_ids[:eos_idx]
|
| 51 |
+
if SNAC_MIN_ID <= token_id <= SNAC_MAX_ID
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
return snac_codes
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def unpack_snac_from_7(snac_tokens: list) -> list:
|
| 58 |
+
"""Unpack 7-token SNAC frames to 3 hierarchical levels."""
|
| 59 |
+
if snac_tokens and snac_tokens[-1] == CODE_END_TOKEN_ID:
|
| 60 |
+
snac_tokens = snac_tokens[:-1]
|
| 61 |
+
|
| 62 |
+
frames = len(snac_tokens) // SNAC_TOKENS_PER_FRAME
|
| 63 |
+
snac_tokens = snac_tokens[:frames * SNAC_TOKENS_PER_FRAME]
|
| 64 |
+
|
| 65 |
+
if frames == 0:
|
| 66 |
+
return [[], [], []]
|
| 67 |
+
|
| 68 |
+
l1, l2, l3 = [], [], []
|
| 69 |
+
|
| 70 |
+
for i in range(frames):
|
| 71 |
+
slots = snac_tokens[i*7:(i+1)*7]
|
| 72 |
+
l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
|
| 73 |
+
l2.extend([
|
| 74 |
+
(slots[1] - CODE_TOKEN_OFFSET) % 4096,
|
| 75 |
+
(slots[4] - CODE_TOKEN_OFFSET) % 4096,
|
| 76 |
+
])
|
| 77 |
+
l3.extend([
|
| 78 |
+
(slots[2] - CODE_TOKEN_OFFSET) % 4096,
|
| 79 |
+
(slots[3] - CODE_TOKEN_OFFSET) % 4096,
|
| 80 |
+
(slots[5] - CODE_TOKEN_OFFSET) % 4096,
|
| 81 |
+
(slots[6] - CODE_TOKEN_OFFSET) % 4096,
|
| 82 |
+
])
|
| 83 |
+
|
| 84 |
+
return [l1, l2, l3]
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def main():
|
| 88 |
+
|
| 89 |
+
# Load the best open source voice AI model
|
| 90 |
+
print("\n[1/3] Loading Maya1 model...")
|
| 91 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 92 |
+
"maya-research/maya1",
|
| 93 |
+
torch_dtype=torch.bfloat16,
|
| 94 |
+
device_map="auto",
|
| 95 |
+
trust_remote_code=True
|
| 96 |
+
)
|
| 97 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 98 |
+
"maya-research/maya1",
|
| 99 |
+
trust_remote_code=True
|
| 100 |
+
)
|
| 101 |
+
print(f"Model loaded: {len(tokenizer)} tokens in vocabulary")
|
| 102 |
+
|
| 103 |
+
# Load SNAC audio decoder (24kHz)
|
| 104 |
+
print("\n[2/3] Loading SNAC audio decoder...")
|
| 105 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
|
| 106 |
+
if torch.cuda.is_available():
|
| 107 |
+
snac_model = snac_model.to("cuda")
|
| 108 |
+
print("SNAC decoder loaded")
|
| 109 |
+
|
| 110 |
+
# Design your voice with natural language
|
| 111 |
+
description = "Realistic male voice in the 30s age with american accent. Normal pitch, warm timbre, conversational pacing."
|
| 112 |
+
text = "Hello! This is Maya1 <laugh_harder> the best open source voice AI model with emotions."
|
| 113 |
+
|
| 114 |
+
print("\n[3/3] Generating speech...")
|
| 115 |
+
print(f"Description: {description}")
|
| 116 |
+
print(f"Text: {text}")
|
| 117 |
+
|
| 118 |
+
# Create prompt with proper formatting
|
| 119 |
+
prompt = build_prompt(tokenizer, description, text)
|
| 120 |
+
|
| 121 |
+
# Debug: Show prompt details
|
| 122 |
+
print(f"\nPrompt preview (first 200 chars):")
|
| 123 |
+
print(f" {repr(prompt[:200])}")
|
| 124 |
+
print(f" Prompt length: {len(prompt)} chars")
|
| 125 |
+
|
| 126 |
+
# Generate emotional speech
|
| 127 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 128 |
+
print(f" Input token count: {inputs['input_ids'].shape[1]} tokens")
|
| 129 |
+
if torch.cuda.is_available():
|
| 130 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 131 |
+
|
| 132 |
+
with torch.inference_mode():
|
| 133 |
+
outputs = model.generate(
|
| 134 |
+
**inputs,
|
| 135 |
+
max_new_tokens=2048, # Increase to let model finish naturally
|
| 136 |
+
min_new_tokens=28, # At least 4 SNAC frames
|
| 137 |
+
temperature=0.4,
|
| 138 |
+
top_p=0.9,
|
| 139 |
+
repetition_penalty=1.1, # Prevent loops
|
| 140 |
+
do_sample=True,
|
| 141 |
+
eos_token_id=CODE_END_TOKEN_ID, # Stop at end of speech token
|
| 142 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Extract generated tokens (everything after the input prompt)
|
| 146 |
+
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
|
| 147 |
+
|
| 148 |
+
print(f"Generated {len(generated_ids)} tokens")
|
| 149 |
+
|
| 150 |
+
# Debug: Check what tokens we got
|
| 151 |
+
print(f" First 20 tokens: {generated_ids[:20]}")
|
| 152 |
+
print(f" Last 20 tokens: {generated_ids[-20:]}")
|
| 153 |
+
|
| 154 |
+
# Check if EOS was generated
|
| 155 |
+
if CODE_END_TOKEN_ID in generated_ids:
|
| 156 |
+
eos_position = generated_ids.index(CODE_END_TOKEN_ID)
|
| 157 |
+
print(f" EOS token found at position {eos_position}/{len(generated_ids)}")
|
| 158 |
+
|
| 159 |
+
# Extract SNAC audio tokens
|
| 160 |
+
snac_tokens = extract_snac_codes(generated_ids)
|
| 161 |
+
|
| 162 |
+
print(f"Extracted {len(snac_tokens)} SNAC tokens")
|
| 163 |
+
|
| 164 |
+
# Debug: Analyze token types
|
| 165 |
+
snac_count = sum(1 for t in generated_ids if SNAC_MIN_ID <= t <= SNAC_MAX_ID)
|
| 166 |
+
other_count = sum(1 for t in generated_ids if t < SNAC_MIN_ID or t > SNAC_MAX_ID)
|
| 167 |
+
print(f" SNAC tokens in output: {snac_count}")
|
| 168 |
+
print(f" Other tokens in output: {other_count}")
|
| 169 |
+
|
| 170 |
+
# Check for SOS token
|
| 171 |
+
if CODE_START_TOKEN_ID in generated_ids:
|
| 172 |
+
sos_pos = generated_ids.index(CODE_START_TOKEN_ID)
|
| 173 |
+
print(f" SOS token at position: {sos_pos}")
|
| 174 |
+
else:
|
| 175 |
+
print(f" No SOS token found in generated output!")
|
| 176 |
+
|
| 177 |
+
if len(snac_tokens) < 7:
|
| 178 |
+
print("Error: Not enough SNAC tokens generated")
|
| 179 |
+
return
|
| 180 |
+
|
| 181 |
+
# Unpack SNAC tokens to 3 hierarchical levels
|
| 182 |
+
levels = unpack_snac_from_7(snac_tokens)
|
| 183 |
+
frames = len(levels[0])
|
| 184 |
+
|
| 185 |
+
print(f"Unpacked to {frames} frames")
|
| 186 |
+
print(f" L1: {len(levels[0])} codes")
|
| 187 |
+
print(f" L2: {len(levels[1])} codes")
|
| 188 |
+
print(f" L3: {len(levels[2])} codes")
|
| 189 |
+
|
| 190 |
+
# Convert to tensors
|
| 191 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 192 |
+
codes_tensor = [
|
| 193 |
+
torch.tensor(level, dtype=torch.long, device=device).unsqueeze(0)
|
| 194 |
+
for level in levels
|
| 195 |
+
]
|
| 196 |
+
|
| 197 |
+
# Generate final audio with SNAC decoder
|
| 198 |
+
print("\n[4/4] Decoding to audio...")
|
| 199 |
+
with torch.inference_mode():
|
| 200 |
+
z_q = snac_model.quantizer.from_codes(codes_tensor)
|
| 201 |
+
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
|
| 202 |
+
|
| 203 |
+
# Trim warmup samples (first 2048 samples)
|
| 204 |
+
if len(audio) > 2048:
|
| 205 |
+
audio = audio[2048:]
|
| 206 |
+
|
| 207 |
+
duration_sec = len(audio) / 24000
|
| 208 |
+
print(f"Audio generated: {len(audio)} samples ({duration_sec:.2f}s)")
|
| 209 |
+
|
| 210 |
+
# Save your emotional voice output
|
| 211 |
+
output_file = "output.wav"
|
| 212 |
+
sf.write(output_file, audio, 24000)
|
| 213 |
+
print(f"\nVoice generated successfully!")
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
if __name__ == "__main__":
|
| 217 |
+
main()
|