Create app py
#1
by
ivanoctaviogaitansantos
- opened
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import gc
|
| 4 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
| 5 |
+
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
logging.basicConfig(level=logging.INFO)
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
class AIImageGeneratorNSFW:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.pipeline = None
|
| 14 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
# ¡Aquí va la línea!
|
| 16 |
+
self.model_id = "segmind/Segmind-DE-XL"
|
| 17 |
+
self.is_model_loaded = False
|
| 18 |
+
logger.info(f"Inicializando en dispositivo: {self.device}")
|
| 19 |
+
|
| 20 |
+
def load_model(self):
|
| 21 |
+
if self.is_model_loaded:
|
| 22 |
+
return True
|
| 23 |
+
try:
|
| 24 |
+
logger.info("Cargando modelo NSFW...")
|
| 25 |
+
torch_dtype = torch.float16 if self.device == "cuda" else torch.float32
|
| 26 |
+
|
| 27 |
+
tokenizer_1 = CLIPTokenizer.from_pretrained(self.model_id, subfolder="tokenizer", use_fast=False)
|
| 28 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(self.model_id, subfolder="tokenizer_2", use_fast=False)
|
| 29 |
+
|
| 30 |
+
text_encoder_1 = CLIPTextModel.from_pretrained(self.model_id, subfolder="text_encoder", torch_dtype=torch_dtype, low_cpu_mem_usage=True)
|
| 31 |
+
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(self.model_id, subfolder="text_encoder_2", torch_dtype=torch_dtype, low_cpu_mem_usage=True)
|
| 32 |
+
|
| 33 |
+
self.pipeline = StableDiffusionXLPipeline.from_pretrained(
|
| 34 |
+
self.model_id,
|
| 35 |
+
tokenizer=[tokenizer_1, tokenizer_2],
|
| 36 |
+
text_encoder=[text_encoder_1, text_encoder_2],
|
| 37 |
+
torch_dtype=torch_dtype,
|
| 38 |
+
scheduler=EulerDiscreteScheduler.from_pretrained(self.model_id, subfolder="scheduler"),
|
| 39 |
+
safety_checker=None,
|
| 40 |
+
use_safetensors=True,
|
| 41 |
+
variant="fp16" if self.device == "cuda" else None
|
| 42 |
+
)
|
| 43 |
+
self.pipeline.to(self.device)
|
| 44 |
+
self.is_model_loaded = True
|
| 45 |
+
logger.info("Modelo NSFW cargado correctamente.")
|
| 46 |
+
return True
|
| 47 |
+
except Exception as e:
|
| 48 |
+
logger.error(f"Error cargando modelo NSFW: {e}")
|
| 49 |
+
return False
|
| 50 |
+
|
| 51 |
+
def generate_image(self, prompt, width=1024, height=576, steps=35, guidance_scale=12.0):
|
| 52 |
+
if not self.is_model_loaded and not self.load_model():
|
| 53 |
+
return None
|
| 54 |
+
try:
|
| 55 |
+
with torch.inference_mode():
|
| 56 |
+
generator = torch.Generator(self.device).manual_seed(torch.randint(0, 2**32, (1,)).item())
|
| 57 |
+
result = self.pipeline(
|
| 58 |
+
prompt=prompt,
|
| 59 |
+
width=(width // 8) * 8,
|
| 60 |
+
height=(height // 8) * 8,
|
| 61 |
+
num_inference_steps=steps,
|
| 62 |
+
guidance_scale=guidance_scale,
|
| 63 |
+
generator=generator,
|
| 64 |
+
output_type="pil"
|
| 65 |
+
)
|
| 66 |
+
gc.collect()
|
| 67 |
+
return result.images[0]
|
| 68 |
+
except Exception as e:
|
| 69 |
+
logger.error(f"Error generando imagen NSFW: {e}")
|
| 70 |
+
gc.collect()
|
| 71 |
+
return None
|
| 72 |
+
|
| 73 |
+
# Instancia global
|
| 74 |
+
generator_nsfw = None
|
| 75 |
+
|
| 76 |
+
def initialize_generator_nsfw():
|
| 77 |
+
global generator_nsfw
|
| 78 |
+
if generator_nsfw is None:
|
| 79 |
+
generator_nsfw = AIImageGeneratorNSFW()
|
| 80 |
+
return generator_nsfw
|
| 81 |
+
|
| 82 |
+
def generate_image_nsfw(prompt, width, height, steps, guidance_scale):
|
| 83 |
+
gen = initialize_generator_nsfw()
|
| 84 |
+
if not prompt.strip():
|
| 85 |
+
return None
|
| 86 |
+
return gen.generate_image(
|
| 87 |
+
prompt=prompt,
|
| 88 |
+
width=int(width),
|
| 89 |
+
height=int(height),
|
| 90 |
+
steps=int(steps),
|
| 91 |
+
guidance_scale=float(guidance_scale)
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
def create_nsfw_interface():
|
| 95 |
+
with gr.Blocks(title="Generador de Imágenes NSFW con IA - Stable Diffusion") as iface:
|
| 96 |
+
gr.Markdown("# 🎨 Generador NSFW basado en Stable Diffusion\n_Uso responsable y solo para adultos_")
|
| 97 |
+
|
| 98 |
+
prompt = gr.Textbox(label="Prompt para la imagen NSFW", placeholder="Describe el contenido explícito...", lines=3)
|
| 99 |
+
width = gr.Slider(512, 1536, value=1024, step=8, label="Ancho (pixeles)")
|
| 100 |
+
height = gr.Slider(512, 1536, value=576, step=8, label="Alto (pixeles)")
|
| 101 |
+
steps = gr.Slider(10, 50, value=35, step=1, label="Pasos de inferencia")
|
| 102 |
+
guidance_scale = gr.Slider(1.0, 20.0, value=12.0, step=0.1, label="Escala de guía")
|
| 103 |
+
|
| 104 |
+
btn_generate = gr.Button("Generar Imagen NSFW")
|
| 105 |
+
img_output = gr.Image(label="Imagen generada")
|
| 106 |
+
|
| 107 |
+
btn_generate.click(
|
| 108 |
+
fn=generate_image_nsfw,
|
| 109 |
+
inputs=[prompt, width, height, steps, guidance_scale],
|
| 110 |
+
outputs=img_output
|
| 111 |
+
)
|
| 112 |
+
return iface
|
| 113 |
+
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
nsfw_app = create_nsfw_interface()
|
| 116 |
+
nsfw_app.launch()
|