|
|
import gradio as gr |
|
|
from matplotlib import gridspec |
|
|
import matplotlib.pyplot as plt |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import torch |
|
|
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation, pipeline |
|
|
|
|
|
MODEL_ID = "nvidia/segformer-b0-finetuned-cityscapes-768-768" |
|
|
processor = AutoImageProcessor.from_pretrained(MODEL_ID) |
|
|
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID) |
|
|
|
|
|
def ade_palette(): |
|
|
"""ADE20K palette that maps each class to RGB values.""" |
|
|
return [ |
|
|
[204, 87, 92],[112, 185, 212],[45, 189, 106],[234, 123, 67],[78, 56, 123],[210, 32, 89], |
|
|
[90, 180, 56],[155, 102, 200],[33, 147, 176],[255, 183, 76],[67, 123, 89],[190, 60, 45], |
|
|
[134, 112, 200],[56, 45, 189],[200, 56, 123],[87, 92, 204],[120, 56, 123],[45, 78, 123], |
|
|
[123, 123, 123] |
|
|
|
|
|
] |
|
|
|
|
|
labels_list = [] |
|
|
with open("labels.txt", "r", encoding="utf-8") as fp: |
|
|
for line in fp: |
|
|
labels_list.append(line.rstrip("\n")) |
|
|
|
|
|
colormap = np.asarray(ade_palette(), dtype=np.uint8) |
|
|
|
|
|
def label_to_color_image(label): |
|
|
if label.ndim != 2: |
|
|
raise ValueError("Expect 2-D input label") |
|
|
if np.max(label) >= len(colormap): |
|
|
raise ValueError("label value too large.") |
|
|
return colormap[label] |
|
|
|
|
|
def draw_plot(pred_img, seg_np): |
|
|
fig = plt.figure(figsize=(20, 15)) |
|
|
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) |
|
|
|
|
|
plt.subplot(grid_spec[0]) |
|
|
plt.imshow(pred_img) |
|
|
plt.axis('off') |
|
|
|
|
|
LABEL_NAMES = np.asarray(labels_list) |
|
|
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) |
|
|
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) |
|
|
|
|
|
unique_labels = np.unique(seg_np.astype("uint8")) |
|
|
ax = plt.subplot(grid_spec[1]) |
|
|
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") |
|
|
ax.yaxis.tick_right() |
|
|
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) |
|
|
plt.xticks([], []) |
|
|
ax.tick_params(width=0.0, labelsize=25) |
|
|
return fig |
|
|
|
|
|
def run_inference(input_img): |
|
|
|
|
|
img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img |
|
|
if img.mode != "RGB": |
|
|
img = img.convert("RGB") |
|
|
|
|
|
inputs = processor(images=img, return_tensors="pt") |
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
logits = outputs.logits |
|
|
|
|
|
|
|
|
upsampled = torch.nn.functional.interpolate( |
|
|
logits, size=img.size[::-1], mode="bilinear", align_corners=False |
|
|
) |
|
|
seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) |
|
|
|
|
|
|
|
|
color_seg = colormap[seg] |
|
|
pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8) |
|
|
|
|
|
|
|
|
total_pixels = seg.size |
|
|
unique_labels, counts = np.unique(seg, return_counts=True) |
|
|
|
|
|
label_results = {} |
|
|
for label_id, count in zip(unique_labels, counts): |
|
|
class_name = labels_list[label_id] |
|
|
percentage = count / total_pixels |
|
|
label_results[class_name] = percentage |
|
|
|
|
|
fig = draw_plot(pred_img, seg) |
|
|
|
|
|
return fig, label_results |
|
|
|
|
|
|
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=run_inference, |
|
|
inputs=gr.Image(type="numpy", label="Input Image"), |
|
|
outputs=[ |
|
|
gr.Plot(label="Overlay + Legend"), |
|
|
gr.Label(label="Class Proportions", num_top_classes=5) |
|
|
], |
|
|
examples=[ |
|
|
"ADE_val_00000001.jpeg", |
|
|
"ADE_val_00001248.jpg", |
|
|
"cityscapes_1.jpg", |
|
|
"cityscapes_2.jpg", |
|
|
"cityscapes_3.jpg", |
|
|
"cityscapes_4.jpg", |
|
|
"cityscapes_5.jpg" |
|
|
|
|
|
], |
|
|
flagging_mode="never", |
|
|
cache_examples=False, |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|