File size: 3,784 Bytes
4a73bb2
 
 
 
 
 
6f4e2c1
4a73bb2
8c2123c
 
 
4a73bb2
 
 
 
 
 
 
2eae21e
4a73bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f4e2c1
 
 
650d70f
6f4e2c1
 
 
 
 
 
 
 
 
 
 
 
4a73bb2
 
 
6f4e2c1
 
 
 
4a73bb2
d1a1ba4
212b3f0
57c9fce
 
 
 
 
dda8a90
4a73bb2
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation, pipeline

MODEL_ID = "nvidia/segformer-b0-finetuned-cityscapes-768-768"
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)

def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [204, 87, 92],[112, 185, 212],[45, 189, 106],[234, 123, 67],[78, 56, 123],[210, 32, 89],
        [90, 180, 56],[155, 102, 200],[33, 147, 176],[255, 183, 76],[67, 123, 89],[190, 60, 45],
        [134, 112, 200],[56, 45, 189],[200, 56, 123],[87, 92, 204],[120, 56, 123],[45, 78, 123],
        [123, 123, 123]

    ]

labels_list = []
with open("labels.txt", "r", encoding="utf-8") as fp:
    for line in fp:
        labels_list.append(line.rstrip("\n"))

colormap = np.asarray(ade_palette(), dtype=np.uint8)

def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")
    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]

def draw_plot(pred_img, seg_np):
    fig = plt.figure(figsize=(20, 15))
    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')

    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg_np.astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    return fig

def run_inference(input_img):
    # input: numpy array from gradio -> PIL
    img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
    if img.mode != "RGB":
        img = img.convert("RGB")

    inputs = processor(images=img, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits  # (1, C, h/4, w/4)

    # resize to original
    upsampled = torch.nn.functional.interpolate(
        logits, size=img.size[::-1], mode="bilinear", align_corners=False
    )
    seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8)  # (H,W)

    # colorize & overlay
    color_seg = colormap[seg]                                # (H,W,3)
    pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)

    # 추가 부분
    total_pixels = seg.size
    unique_labels, counts = np.unique(seg, return_counts=True)
    # gr.Label
    label_results = {}
    for label_id, count in zip(unique_labels, counts):
        class_name = labels_list[label_id]
        percentage = count / total_pixels
        label_results[class_name] = percentage

    fig = draw_plot(pred_img, seg)

    return fig, label_results

# 인터페이스

demo = gr.Interface(
    fn=run_inference,
    inputs=gr.Image(type="numpy", label="Input Image"),
    outputs=[
        gr.Plot(label="Overlay + Legend"),
        gr.Label(label="Class Proportions", num_top_classes=5)
        ],
    examples=[
        "ADE_val_00000001.jpeg",
        "ADE_val_00001248.jpg",
        "cityscapes_1.jpg",
        "cityscapes_2.jpg",
        "cityscapes_3.jpg",
        "cityscapes_4.jpg",
        "cityscapes_5.jpg"

    ],
    flagging_mode="never",
    cache_examples=False,
)

if __name__ == "__main__":
    demo.launch()