Min-gyu
task3
78e1acc
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
MODEL_ID = "nvidia/segformer-b0-finetuned-cityscapes-768-768"
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
def ade_palette():
return [
[255,228,0], #road
[255,94,0], #sidewalk
[1,1,1], #building
[255,0,0], #wall
[255,255,255], #fence
[0,0,255], #pole
[196,183,59], #traffic light
[103,0,0], #traffic sign
[0,255,0], #vegetation
[0,216,255], #terrain
[255,0,127], #sky
[165,102,255], #person
[255,0,221], #rider
[241,95,95], #car
[107,102,255], #truck
[102,92,0], #bus
[171,242,0], #train
[67,116,127], #motorcycle
[71,200,62], #bicycle
]
labels_list = []
with open("labels.txt", "r", encoding="utf-8") as fp:
for line in fp:
labels_list.append(line.rstrip("\n"))
colormap = np.asarray(ade_palette(), dtype=np.uint8)
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg_np):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg_np.astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def run_inference(input_img):
# input: numpy array from gradio -> PIL
img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
if img.mode != "RGB":
img = img.convert("RGB")
inputs = processor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits # (1, C, h/4, w/4)
# resize to original
upsampled = torch.nn.functional.interpolate(
logits, size=img.size[::-1], mode="bilinear", align_corners=False
)
seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W)
# colorize & overlay
color_seg = colormap[seg] # (H,W,3)
pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(
fn=run_inference,
inputs=gr.Image(type="numpy", label="Input Image"),
outputs=gr.Plot(label="Overlay + Legend"),
examples=[
"street-1.jpg",
"street-2.jpg",
"street-3.jpg",
"street-4.jpg",
],
flagging_mode="never",
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()