import gradio as gr from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from PIL import Image import torch from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation MODEL_ID = "nvidia/segformer-b0-finetuned-cityscapes-768-768" processor = AutoImageProcessor.from_pretrained(MODEL_ID) model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID) def ade_palette(): return [ [255,228,0], #road [255,94,0], #sidewalk [1,1,1], #building [255,0,0], #wall [255,255,255], #fence [0,0,255], #pole [196,183,59], #traffic light [103,0,0], #traffic sign [0,255,0], #vegetation [0,216,255], #terrain [255,0,127], #sky [165,102,255], #person [255,0,221], #rider [241,95,95], #car [107,102,255], #truck [102,92,0], #bus [171,242,0], #train [67,116,127], #motorcycle [71,200,62], #bicycle ] labels_list = [] with open("labels.txt", "r", encoding="utf-8") as fp: for line in fp: labels_list.append(line.rstrip("\n")) colormap = np.asarray(ade_palette(), dtype=np.uint8) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg_np): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg_np.astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) return fig def run_inference(input_img): # input: numpy array from gradio -> PIL img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img if img.mode != "RGB": img = img.convert("RGB") inputs = processor(images=img, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # (1, C, h/4, w/4) # resize to original upsampled = torch.nn.functional.interpolate( logits, size=img.size[::-1], mode="bilinear", align_corners=False ) seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W) # colorize & overlay color_seg = colormap[seg] # (H,W,3) pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8) fig = draw_plot(pred_img, seg) return fig demo = gr.Interface( fn=run_inference, inputs=gr.Image(type="numpy", label="Input Image"), outputs=gr.Plot(label="Overlay + Legend"), examples=[ "street-1.jpg", "street-2.jpg", "street-3.jpg", "street-4.jpg", ], flagging_mode="never", cache_examples=False, ) if __name__ == "__main__": demo.launch()