ThtratLandscapeChat / README.md
S-Dreamer's picture
Update README.md
2720809 verified
|
raw
history blame
3.47 kB
metadata
title: ThtratLandscapeChat
emoji: πŸ’¬
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 6.0.0
app_file: app.py
pinned: false
hf_oauth: true
hf_oauth_scopes:
  - inference-api
license: mit
datasets:
  - mrmoor/cyber-threat-intelligence
  - romaingrx/red-teamer-mistral-
  - SummerSigh/Muti-Class-Redteaming

APJ Threat Intelligence System

Mobile-First, Multilingual Cybercrime Intelligence Platform

Overview

This project delivers a full-stack threat-intelligence console focused on Asia-Pacific & Japan (APJ) cybercrime ecosystems. The system ingests Mandarin/Cantonese underground-market chatter, interprets idioms and cultural nuances, classifies threats using transformer models, and presents insights to analysts through a mobile-first Gradio interface.

The design is modular, allowing you to use:

  • Local Transformers models (HuggingFace)
  • External LLM APIs
  • Custom datasets
  • A growing slang / idiom lexicon
  • Marketplace monitoring pipelines

This repository is optimized for GitHub and HuggingFace Spaces.


✨ Features

πŸ” Intelligence Layer

  • Threat classification (Transformers)
  • Vendor graph modeling
  • Marketplace and trend analysis
  • Slang & idiom identification

🌏 Multilingual Processing

  • Mandarin + Cantonese dialect detection
  • Literal + functional translation
  • Cultural interpretation for cybercrime slang

πŸ“± Mobile-First UI

Built with Gradio 4.x:

  • Single-column layout
  • Mode switcher (Threat Intel / Translation / Marketplace Watch / Analyst Tools)
  • File upload for logs, screenshots, raw text
  • Downloadable chat transcripts
  • Clean UX optimized for mobile operators

πŸ”§ Built With

  • transformers
  • datasets
  • gradio
  • Python 3.10+

🧩 Repository Structure

. β”œβ”€β”€ app.py # Main Gradio app β”œβ”€β”€ prompt_engine.py # Centralized prompt construction β”œβ”€β”€ model_inference.py # Transformers-based inference wrapper β”œβ”€β”€ datasets_loader.py # HuggingFace datasets loader utilities β”œβ”€β”€ slang_lexicon.json # Evolving idiom/slang dictionary β”œβ”€β”€ PROJECT_SPEC.md # Architectural overview β”œβ”€β”€ HUGGINGFACE.md # HF Spaces deployment instructions β”œβ”€β”€ GITHUB_SETUP.md # Repo usage & development guide β”œβ”€β”€ requirements.txt └── README.md


πŸš€ Running Locally

1. Clone the repo

git clone https://github.com/<yourname>/apj-threat-intel
cd apj-threat-intel

2. Install requirements

pip install -r requirements.txt

3. Launch the app

python app.py

The interface opens automatically in your browser.

βΈ»

🧠 Model Integration

You can plug your own HuggingFace model into model_inference.py:

ThreatModel(model_path="your-model-name")

Or use an API-driven LLM via prompt_engine.py.

βΈ»

🌐 Deploy on HuggingFace Spaces

See HUGGINGFACE.md in this repo for step-by-step instructions.

βΈ»

πŸ“„ Docs
    β€’	Project SpecοΏΌ
    β€’	HF Spaces SetupοΏΌ
    β€’	GitHub Setup GuideοΏΌ

βΈ»

πŸ“œ License

MIT (You may swap this with your preferred license.)

βΈ»

🀝 Contributing

Pull requests and issue reports are welcome.

βΈ»

🧭 Roadmap
    β€’	Vendor identity resolution model
    β€’	Marketplace scraping connectors
    β€’	Cantonese pretrained language model fine-tuning
    β€’	In-browser graph explorer
    β€’	Real-time alerting engine

βΈ»

βœ‰οΈ Contact

For questions, enhancements, or collaboration, open an issue.

---