Spaces:
Sleeping
title: ThtratLandscapeChat
emoji: π¬
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 6.0.0
app_file: app.py
pinned: false
hf_oauth: true
hf_oauth_scopes:
- inference-api
license: mit
datasets:
- mrmoor/cyber-threat-intelligence
- romaingrx/red-teamer-mistral-
- SummerSigh/Muti-Class-Redteaming
APJ Threat Intelligence System
Mobile-First, Multilingual Cybercrime Intelligence Platform
Overview
This project delivers a full-stack threat-intelligence console focused on Asia-Pacific & Japan (APJ) cybercrime ecosystems. The system ingests Mandarin/Cantonese underground-market chatter, interprets idioms and cultural nuances, classifies threats using transformer models, and presents insights to analysts through a mobile-first Gradio interface.
The design is modular, allowing you to use:
- Local Transformers models (HuggingFace)
- External LLM APIs
- Custom datasets
- A growing slang / idiom lexicon
- Marketplace monitoring pipelines
This repository is optimized for GitHub and HuggingFace Spaces.
β¨ Features
π Intelligence Layer
- Threat classification (Transformers)
- Vendor graph modeling
- Marketplace and trend analysis
- Slang & idiom identification
π Multilingual Processing
- Mandarin + Cantonese dialect detection
- Literal + functional translation
- Cultural interpretation for cybercrime slang
π± Mobile-First UI
Built with Gradio 4.x:
- Single-column layout
- Mode switcher (Threat Intel / Translation / Marketplace Watch / Analyst Tools)
- File upload for logs, screenshots, raw text
- Downloadable chat transcripts
- Clean UX optimized for mobile operators
π§ Built With
transformersdatasetsgradio- Python 3.10+
π§© Repository Structure
. βββ app.py # Main Gradio app βββ prompt_engine.py # Centralized prompt construction βββ model_inference.py # Transformers-based inference wrapper βββ datasets_loader.py # HuggingFace datasets loader utilities βββ slang_lexicon.json # Evolving idiom/slang dictionary βββ PROJECT_SPEC.md # Architectural overview βββ HUGGINGFACE.md # HF Spaces deployment instructions βββ GITHUB_SETUP.md # Repo usage & development guide βββ requirements.txt βββ README.md
π Running Locally
1. Clone the repo
git clone https://github.com/<yourname>/apj-threat-intel
cd apj-threat-intel
2. Install requirements
pip install -r requirements.txt
3. Launch the app
python app.py
The interface opens automatically in your browser.
βΈ»
π§ Model Integration
You can plug your own HuggingFace model into model_inference.py:
ThreatModel(model_path="your-model-name")
Or use an API-driven LLM via prompt_engine.py.
βΈ»
π Deploy on HuggingFace Spaces
See HUGGINGFACE.md in this repo for step-by-step instructions.
βΈ»
π Docs
β’ Project SpecοΏΌ
β’ HF Spaces SetupοΏΌ
β’ GitHub Setup GuideοΏΌ
βΈ»
π License
MIT (You may swap this with your preferred license.)
βΈ»
π€ Contributing
Pull requests and issue reports are welcome.
βΈ»
π§ Roadmap
β’ Vendor identity resolution model
β’ Marketplace scraping connectors
β’ Cantonese pretrained language model fine-tuning
β’ In-browser graph explorer
β’ Real-time alerting engine
βΈ»
βοΈ Contact
For questions, enhancements, or collaboration, open an issue.
---