File size: 8,602 Bytes
4bf06f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# import os
# os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

# import streamlit as st
# import cv2
# from tqdm import tqdm
# import numpy as np
# import tensorflow as tf
# import pandas as pd
# from tempfile import NamedTemporaryFile
# from functions import *

# threshold=[0.6827917,
#  0.7136434,
#  0.510756,
#  0.56771123,
#  0.49417764,
#  0.45892453,
#  0.32996163,
#  0.5038406,
#  0.44855,
#  0.32959282,
#  0.45619836,
#  0.4969851]
# au_to_movements= {
#     'au1': 'inner brow raiser',
#     'au2': 'outer brow raiser',
#     'au4': 'brow lowerer',
#     'au5': 'upper lid raiser',
#     'au6': 'cheek raiser',
#     'au9': 'nose wrinkler',
#     'au12': 'lip corner puller',
#     'au15': 'lip corner depressor',
#     'au17': 'chin raiser',
#     'au20': 'lip stretcher',
#     'au25': 'lips part',
#     'au26': 'jaw drop'
# }
# au_labels = [
#     "au1",
#     "au12",
#     "au15",
#     "au17",
#     "au2",
#     "au20",
#     "au25",
#     "au26",
#     "au4",
#     "au5",
#     "au6",
#     "au9"
# ]
# col=[au_to_movements[i] for i in au_labels]
# def binary_focal_loss(gamma=2.0, alpha=0.25):
#     def focal_loss(y_true, y_pred):
#         # Define epsilon to avoid log(0)
#         epsilon = tf.keras.backend.epsilon()
#         # Clip predictions to prevent log(0) and log(1 - 0)
#         y_pred = tf.clip_by_value(y_pred, epsilon, 1.0 - epsilon)
#         # Compute the focal loss
#         fl = - alpha * (y_true * (1 - y_pred)**gamma * tf.math.log(y_pred)
#                        + (1 - y_true) * (y_pred**gamma) * tf.math.log(1 - y_pred))
#         return tf.reduce_mean(fl, axis=-1)
#     return focal_loss

# loss = binary_focal_loss(gamma=2.0, alpha=0.25)

# # Function to read video frames into a list
# def read_video_frames(video_path):
#     cap = cv2.VideoCapture(video_path)
#     frames = []
#     while True:
#         ret, frame = cap.read()
#         if not ret:
#             break
#         frames.append(frame)

#     cap.release()
#     return frames

# # Function to process frames and make predictions
# def process_frames(frames, model):
#     frames = [get_face(frame) for frame in tqdm(frames[:len(frames)-1])]
#     st.text(f"face shape : {frames[0].shape}")
#     frame_array = np.array(frames)
#     preds = model.predict(frame_array)
#     print(preds[0])
#     predicted_labels = np.zeros_like(preds,dtype='int')
#     for i in range(12):
#         predicted_labels[:, i] = (preds[:, i] > threshold[i]).astype(int)
#     return predicted_labels

# # Function to save predictions to a CSV file
# def save_predictions_to_csv(predictions, filename="predictions.csv"):
#     df = pd.DataFrame(predictions,columns=col)
#     df.to_csv(filename, index=False)
#     return filename

# # Load your Keras model
# def load_model():
#     model = tf.keras.models.load_model('incept_v3_10fps_full_0.4.keras',
#                                        custom_objects={'binary_focal_loss': binary_focal_loss})
#     return model

# # Streamlit app
# def main():
#     st.title("Video Frame Prediction App")
    
#     # Upload video file
#     uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])

#     if uploaded_file is not None:
#         with NamedTemporaryFile(delete=False) as tmp_file:
#             tmp_file.write(uploaded_file.read())
#             video_path = tmp_file.name

#         # Load the model
#         model = load_model()

#         # Predict button
#         if st.button("Predict"):
#             # Read frames from video
#             st.text("Reading video frames...")
#             frames = read_video_frames(video_path)
#             st.text(f"Total frames read: {len(frames)}")

#             # Process frames and make predictions
#             st.text("Processing frames and making predictions...")
#             predictions = process_frames(frames, model)
#             st.text("Predictions completed!")

#             # Save predictions to CSV
#             csv_file_path = save_predictions_to_csv(predictions)
#             st.text("Predictions saved to CSV!")

#             # Make CSV downloadable
#             with open(csv_file_path, "rb") as f:
#                 st.download_button(
#                     label="Download CSV",
#                     data=f,
#                     file_name="predictions.csv",
#                     mime="text/csv"
#                 )

#             # Clean up the temporary file
#             os.remove(video_path)

# if __name__ == "__main__":
#     main()


import os
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

import streamlit as st
import cv2
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import pandas as pd
from tempfile import NamedTemporaryFile
from functions import *

threshold = [
    0.6827917, 0.7136434, 0.510756, 0.56771123, 0.49417764, 0.45892453,
    0.32996163, 0.5038406, 0.44855, 0.32959282, 0.45619836, 0.4969851
]

au_to_movements = {
    'au1': 'inner brow raiser',
    'au2': 'outer brow raiser',
    'au4': 'brow lowerer',
    'au5': 'upper lid raiser',
    'au6': 'cheek raiser',
    'au9': 'nose wrinkler',
    'au12': 'lip corner puller',
    'au15': 'lip corner depressor',
    'au17': 'chin raiser',
    'au20': 'lip stretcher',
    'au25': 'lips part',
    'au26': 'jaw drop'
}

au_labels = [
    "au1", "au12", "au15", "au17", "au2", "au20",
    "au25", "au26", "au4", "au5", "au6", "au9"
]

col = [au_to_movements[i] for i in au_labels]

def binary_focal_loss(gamma=2.0, alpha=0.25):
    def focal_loss(y_true, y_pred):
        epsilon = tf.keras.backend.epsilon()
        y_pred = tf.clip_by_value(y_pred, epsilon, 1.0 - epsilon)
        fl = - alpha * (y_true * (1 - y_pred)**gamma * tf.math.log(y_pred)
                       + (1 - y_true) * (y_pred**gamma) * tf.math.log(1 - y_pred))
        return tf.reduce_mean(fl, axis=-1)
    return focal_loss

loss = binary_focal_loss(gamma=2.0, alpha=0.25)

# Function to read video frames into a list and get timestamps
def read_video_frames(video_path):
    cap = cv2.VideoCapture(video_path)
    frames = []
    faces=[]
    timestamps = []
    fps = cap.get(cv2.CAP_PROP_FPS)
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        face=get_face(frame)
        if face is not None:
            faces.append(face)
            frames.append(frame)
            timestamps.append(cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.0)  # Time in seconds

    cap.release()
    return frames,faces, timestamps

# Function to process frames and make predictions
def process_frames(frames, model):
    frame_array = np.array(frames)
    preds = model.predict(frame_array)
    predicted_labels = np.zeros_like(preds, dtype='int')
    for i in range(12):
        predicted_labels[:, i] = (preds[:, i] > threshold[i]).astype(int)
    return predicted_labels

# Function to save predictions to a CSV file with timestamps
def save_predictions_to_csv(predictions, timestamps, filename="predictions.csv"):
    df = pd.DataFrame(predictions, columns=col)
    df['timestamp'] = timestamps
    df.set_index('timestamp', inplace=True)
    df.to_csv(filename)
    return filename

# Load your Keras model
def load_model():
    model = tf.keras.models.load_model('incept_v3_10fps_full_0.4.keras',
                                       custom_objects={'binary_focal_loss': binary_focal_loss})
    return model

# Streamlit app
def main():
    st.title("Facial action unit detection")
    
    uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])

    if uploaded_file is not None:
        with NamedTemporaryFile(delete=False) as tmp_file:
            tmp_file.write(uploaded_file.read())
            video_path = tmp_file.name

        model = load_model()

        if st.button("Predict"):
            st.text("Reading video frames...")
            frames,faces, timestamps = read_video_frames(video_path)
            st.text(f"Total frames in which faces found: {len(faces)}")
            
            st.text("Processing frames and making predictions...")
            predictions = process_frames(faces, model)
            st.text("Predictions completed!")

            csv_file_path = save_predictions_to_csv(predictions, timestamps)
            st.text("Predictions saved to CSV!")

            with open(csv_file_path, "rb") as f:
                st.download_button(
                    label="Download CSV",
                    data=f,
                    file_name="predictions.csv",
                    mime="text/csv"
                )

            os.remove(video_path)

if __name__ == "__main__":
    main()