Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,281 +1,281 @@
|
|
| 1 |
-
# import os
|
| 2 |
-
# os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 3 |
-
|
| 4 |
-
# import streamlit as st
|
| 5 |
-
# import cv2
|
| 6 |
-
# from tqdm import tqdm
|
| 7 |
-
# import numpy as np
|
| 8 |
-
# import tensorflow as tf
|
| 9 |
-
# import pandas as pd
|
| 10 |
-
# from tempfile import NamedTemporaryFile
|
| 11 |
-
# from functions import *
|
| 12 |
-
|
| 13 |
-
# threshold=[0.6827917,
|
| 14 |
-
# 0.7136434,
|
| 15 |
-
# 0.510756,
|
| 16 |
-
# 0.56771123,
|
| 17 |
-
# 0.49417764,
|
| 18 |
-
# 0.45892453,
|
| 19 |
-
# 0.32996163,
|
| 20 |
-
# 0.5038406,
|
| 21 |
-
# 0.44855,
|
| 22 |
-
# 0.32959282,
|
| 23 |
-
# 0.45619836,
|
| 24 |
-
# 0.4969851]
|
| 25 |
-
# au_to_movements= {
|
| 26 |
-
# 'au1': 'inner brow raiser',
|
| 27 |
-
# 'au2': 'outer brow raiser',
|
| 28 |
-
# 'au4': 'brow lowerer',
|
| 29 |
-
# 'au5': 'upper lid raiser',
|
| 30 |
-
# 'au6': 'cheek raiser',
|
| 31 |
-
# 'au9': 'nose wrinkler',
|
| 32 |
-
# 'au12': 'lip corner puller',
|
| 33 |
-
# 'au15': 'lip corner depressor',
|
| 34 |
-
# 'au17': 'chin raiser',
|
| 35 |
-
# 'au20': 'lip stretcher',
|
| 36 |
-
# 'au25': 'lips part',
|
| 37 |
-
# 'au26': 'jaw drop'
|
| 38 |
-
# }
|
| 39 |
-
# au_labels = [
|
| 40 |
-
# "au1",
|
| 41 |
-
# "au12",
|
| 42 |
-
# "au15",
|
| 43 |
-
# "au17",
|
| 44 |
-
# "au2",
|
| 45 |
-
# "au20",
|
| 46 |
-
# "au25",
|
| 47 |
-
# "au26",
|
| 48 |
-
# "au4",
|
| 49 |
-
# "au5",
|
| 50 |
-
# "au6",
|
| 51 |
-
# "au9"
|
| 52 |
-
# ]
|
| 53 |
-
# col=[au_to_movements[i] for i in au_labels]
|
| 54 |
-
# def binary_focal_loss(gamma=2.0, alpha=0.25):
|
| 55 |
-
# def focal_loss(y_true, y_pred):
|
| 56 |
-
# # Define epsilon to avoid log(0)
|
| 57 |
-
# epsilon = tf.keras.backend.epsilon()
|
| 58 |
-
# # Clip predictions to prevent log(0) and log(1 - 0)
|
| 59 |
-
# y_pred = tf.clip_by_value(y_pred, epsilon, 1.0 - epsilon)
|
| 60 |
-
# # Compute the focal loss
|
| 61 |
-
# fl = - alpha * (y_true * (1 - y_pred)**gamma * tf.math.log(y_pred)
|
| 62 |
-
# + (1 - y_true) * (y_pred**gamma) * tf.math.log(1 - y_pred))
|
| 63 |
-
# return tf.reduce_mean(fl, axis=-1)
|
| 64 |
-
# return focal_loss
|
| 65 |
-
|
| 66 |
-
# loss = binary_focal_loss(gamma=2.0, alpha=0.25)
|
| 67 |
-
|
| 68 |
-
# # Function to read video frames into a list
|
| 69 |
-
# def read_video_frames(video_path):
|
| 70 |
-
# cap = cv2.VideoCapture(video_path)
|
| 71 |
-
# frames = []
|
| 72 |
-
# while True:
|
| 73 |
-
# ret, frame = cap.read()
|
| 74 |
-
# if not ret:
|
| 75 |
-
# break
|
| 76 |
-
# frames.append(frame)
|
| 77 |
-
|
| 78 |
-
# cap.release()
|
| 79 |
-
# return frames
|
| 80 |
-
|
| 81 |
-
# # Function to process frames and make predictions
|
| 82 |
-
# def process_frames(frames, model):
|
| 83 |
-
# frames = [get_face(frame) for frame in tqdm(frames[:len(frames)-1])]
|
| 84 |
-
# st.text(f"face shape : {frames[0].shape}")
|
| 85 |
-
# frame_array = np.array(frames)
|
| 86 |
-
# preds = model.predict(frame_array)
|
| 87 |
-
# print(preds[0])
|
| 88 |
-
# predicted_labels = np.zeros_like(preds,dtype='int')
|
| 89 |
-
# for i in range(12):
|
| 90 |
-
# predicted_labels[:, i] = (preds[:, i] > threshold[i]).astype(int)
|
| 91 |
-
# return predicted_labels
|
| 92 |
-
|
| 93 |
-
# # Function to save predictions to a CSV file
|
| 94 |
-
# def save_predictions_to_csv(predictions, filename="predictions.csv"):
|
| 95 |
-
# df = pd.DataFrame(predictions,columns=col)
|
| 96 |
-
# df.to_csv(filename, index=False)
|
| 97 |
-
# return filename
|
| 98 |
-
|
| 99 |
-
# # Load your Keras model
|
| 100 |
-
# def load_model():
|
| 101 |
-
# model = tf.keras.models.load_model('incept_v3_10fps_full_0.4.keras',
|
| 102 |
-
# custom_objects={'binary_focal_loss': binary_focal_loss})
|
| 103 |
-
# return model
|
| 104 |
-
|
| 105 |
-
# # Streamlit app
|
| 106 |
-
# def main():
|
| 107 |
-
# st.title("Video Frame Prediction App")
|
| 108 |
-
|
| 109 |
-
# # Upload video file
|
| 110 |
-
# uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
|
| 111 |
-
|
| 112 |
-
# if uploaded_file is not None:
|
| 113 |
-
# with NamedTemporaryFile(delete=False) as tmp_file:
|
| 114 |
-
# tmp_file.write(uploaded_file.read())
|
| 115 |
-
# video_path = tmp_file.name
|
| 116 |
-
|
| 117 |
-
# # Load the model
|
| 118 |
-
# model = load_model()
|
| 119 |
-
|
| 120 |
-
# # Predict button
|
| 121 |
-
# if st.button("Predict"):
|
| 122 |
-
# # Read frames from video
|
| 123 |
-
# st.text("Reading video frames...")
|
| 124 |
-
# frames = read_video_frames(video_path)
|
| 125 |
-
# st.text(f"Total frames read: {len(frames)}")
|
| 126 |
-
|
| 127 |
-
# # Process frames and make predictions
|
| 128 |
-
# st.text("Processing frames and making predictions...")
|
| 129 |
-
# predictions = process_frames(frames, model)
|
| 130 |
-
# st.text("Predictions completed!")
|
| 131 |
-
|
| 132 |
-
# # Save predictions to CSV
|
| 133 |
-
# csv_file_path = save_predictions_to_csv(predictions)
|
| 134 |
-
# st.text("Predictions saved to CSV!")
|
| 135 |
-
|
| 136 |
-
# # Make CSV downloadable
|
| 137 |
-
# with open(csv_file_path, "rb") as f:
|
| 138 |
-
# st.download_button(
|
| 139 |
-
# label="Download CSV",
|
| 140 |
-
# data=f,
|
| 141 |
-
# file_name="predictions.csv",
|
| 142 |
-
# mime="text/csv"
|
| 143 |
-
# )
|
| 144 |
-
|
| 145 |
-
# # Clean up the temporary file
|
| 146 |
-
# os.remove(video_path)
|
| 147 |
-
|
| 148 |
-
# if __name__ == "__main__":
|
| 149 |
-
# main()
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
import os
|
| 153 |
-
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 154 |
-
|
| 155 |
-
import streamlit as st
|
| 156 |
-
import cv2
|
| 157 |
-
from tqdm import tqdm
|
| 158 |
-
import numpy as np
|
| 159 |
-
import tensorflow as tf
|
| 160 |
-
import pandas as pd
|
| 161 |
-
from tempfile import NamedTemporaryFile
|
| 162 |
-
from functions import *
|
| 163 |
-
|
| 164 |
-
threshold = [
|
| 165 |
-
0.6827917, 0.7136434, 0.510756, 0.56771123, 0.49417764, 0.45892453,
|
| 166 |
-
0.32996163, 0.5038406, 0.44855, 0.32959282, 0.45619836, 0.4969851
|
| 167 |
-
]
|
| 168 |
-
|
| 169 |
-
au_to_movements = {
|
| 170 |
-
'au1': 'inner brow raiser',
|
| 171 |
-
'au2': 'outer brow raiser',
|
| 172 |
-
'au4': 'brow lowerer',
|
| 173 |
-
'au5': 'upper lid raiser',
|
| 174 |
-
'au6': 'cheek raiser',
|
| 175 |
-
'au9': 'nose wrinkler',
|
| 176 |
-
'au12': 'lip corner puller',
|
| 177 |
-
'au15': 'lip corner depressor',
|
| 178 |
-
'au17': 'chin raiser',
|
| 179 |
-
'au20': 'lip stretcher',
|
| 180 |
-
'au25': 'lips part',
|
| 181 |
-
'au26': 'jaw drop'
|
| 182 |
-
}
|
| 183 |
-
|
| 184 |
-
au_labels = [
|
| 185 |
-
"au1", "au12", "au15", "au17", "au2", "au20",
|
| 186 |
-
"au25", "au26", "au4", "au5", "au6", "au9"
|
| 187 |
-
]
|
| 188 |
-
|
| 189 |
-
col = [au_to_movements[i] for i in au_labels]
|
| 190 |
-
|
| 191 |
-
def binary_focal_loss(gamma=2.0, alpha=0.25):
|
| 192 |
-
def focal_loss(y_true, y_pred):
|
| 193 |
-
epsilon = tf.keras.backend.epsilon()
|
| 194 |
-
y_pred = tf.clip_by_value(y_pred, epsilon, 1.0 - epsilon)
|
| 195 |
-
fl = - alpha * (y_true * (1 - y_pred)**gamma * tf.math.log(y_pred)
|
| 196 |
-
+ (1 - y_true) * (y_pred**gamma) * tf.math.log(1 - y_pred))
|
| 197 |
-
return tf.reduce_mean(fl, axis=-1)
|
| 198 |
-
return focal_loss
|
| 199 |
-
|
| 200 |
-
loss = binary_focal_loss(gamma=2.0, alpha=0.25)
|
| 201 |
-
|
| 202 |
-
# Function to read video frames into a list and get timestamps
|
| 203 |
-
def read_video_frames(video_path):
|
| 204 |
-
cap = cv2.VideoCapture(video_path)
|
| 205 |
-
frames = []
|
| 206 |
-
faces=[]
|
| 207 |
-
timestamps = []
|
| 208 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 209 |
-
while True:
|
| 210 |
-
ret, frame = cap.read()
|
| 211 |
-
if not ret:
|
| 212 |
-
break
|
| 213 |
-
face=get_face(frame)
|
| 214 |
-
if face is not None:
|
| 215 |
-
faces.append(face)
|
| 216 |
-
frames.append(frame)
|
| 217 |
-
timestamps.append(cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.0) # Time in seconds
|
| 218 |
-
|
| 219 |
-
cap.release()
|
| 220 |
-
return frames,faces, timestamps
|
| 221 |
-
|
| 222 |
-
# Function to process frames and make predictions
|
| 223 |
-
def process_frames(frames, model):
|
| 224 |
-
frame_array = np.array(frames)
|
| 225 |
-
preds = model.predict(frame_array)
|
| 226 |
-
predicted_labels = np.zeros_like(preds, dtype='int')
|
| 227 |
-
for i in range(12):
|
| 228 |
-
predicted_labels[:, i] = (preds[:, i] > threshold[i]).astype(int)
|
| 229 |
-
return
|
| 230 |
-
|
| 231 |
-
# Function to save predictions to a CSV file with timestamps
|
| 232 |
-
def save_predictions_to_csv(predictions, timestamps, filename="predictions.csv"):
|
| 233 |
-
df = pd.DataFrame(predictions, columns=col)
|
| 234 |
-
df['timestamp'] = timestamps
|
| 235 |
-
df.set_index('timestamp', inplace=True)
|
| 236 |
-
df.to_csv(filename)
|
| 237 |
-
return filename
|
| 238 |
-
|
| 239 |
-
# Load your Keras model
|
| 240 |
-
def load_model():
|
| 241 |
-
model = tf.keras.models.load_model('incept_v3_10fps_full_0.4.keras',
|
| 242 |
-
custom_objects={'binary_focal_loss': binary_focal_loss})
|
| 243 |
-
return model
|
| 244 |
-
|
| 245 |
-
# Streamlit app
|
| 246 |
-
def main():
|
| 247 |
-
st.title("Facial action unit detection")
|
| 248 |
-
|
| 249 |
-
uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
|
| 250 |
-
|
| 251 |
-
if uploaded_file is not None:
|
| 252 |
-
with NamedTemporaryFile(delete=False) as tmp_file:
|
| 253 |
-
tmp_file.write(uploaded_file.read())
|
| 254 |
-
video_path = tmp_file.name
|
| 255 |
-
|
| 256 |
-
model = load_model()
|
| 257 |
-
|
| 258 |
-
if st.button("Predict"):
|
| 259 |
-
st.text("Reading video frames...")
|
| 260 |
-
frames,faces, timestamps = read_video_frames(video_path)
|
| 261 |
-
st.text(f"Total frames in which faces found: {len(faces)}")
|
| 262 |
-
|
| 263 |
-
st.text("Processing frames and making predictions...")
|
| 264 |
-
predictions = process_frames(faces, model)
|
| 265 |
-
st.text("Predictions completed!")
|
| 266 |
-
|
| 267 |
-
csv_file_path = save_predictions_to_csv(predictions, timestamps)
|
| 268 |
-
st.text("Predictions saved to CSV!")
|
| 269 |
-
|
| 270 |
-
with open(csv_file_path, "rb") as f:
|
| 271 |
-
st.download_button(
|
| 272 |
-
label="Download CSV",
|
| 273 |
-
data=f,
|
| 274 |
-
file_name="predictions.csv",
|
| 275 |
-
mime="text/csv"
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
os.remove(video_path)
|
| 279 |
-
|
| 280 |
-
if __name__ == "__main__":
|
| 281 |
-
main()
|
|
|
|
| 1 |
+
# import os
|
| 2 |
+
# os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 3 |
+
|
| 4 |
+
# import streamlit as st
|
| 5 |
+
# import cv2
|
| 6 |
+
# from tqdm import tqdm
|
| 7 |
+
# import numpy as np
|
| 8 |
+
# import tensorflow as tf
|
| 9 |
+
# import pandas as pd
|
| 10 |
+
# from tempfile import NamedTemporaryFile
|
| 11 |
+
# from functions import *
|
| 12 |
+
|
| 13 |
+
# threshold=[0.6827917,
|
| 14 |
+
# 0.7136434,
|
| 15 |
+
# 0.510756,
|
| 16 |
+
# 0.56771123,
|
| 17 |
+
# 0.49417764,
|
| 18 |
+
# 0.45892453,
|
| 19 |
+
# 0.32996163,
|
| 20 |
+
# 0.5038406,
|
| 21 |
+
# 0.44855,
|
| 22 |
+
# 0.32959282,
|
| 23 |
+
# 0.45619836,
|
| 24 |
+
# 0.4969851]
|
| 25 |
+
# au_to_movements= {
|
| 26 |
+
# 'au1': 'inner brow raiser',
|
| 27 |
+
# 'au2': 'outer brow raiser',
|
| 28 |
+
# 'au4': 'brow lowerer',
|
| 29 |
+
# 'au5': 'upper lid raiser',
|
| 30 |
+
# 'au6': 'cheek raiser',
|
| 31 |
+
# 'au9': 'nose wrinkler',
|
| 32 |
+
# 'au12': 'lip corner puller',
|
| 33 |
+
# 'au15': 'lip corner depressor',
|
| 34 |
+
# 'au17': 'chin raiser',
|
| 35 |
+
# 'au20': 'lip stretcher',
|
| 36 |
+
# 'au25': 'lips part',
|
| 37 |
+
# 'au26': 'jaw drop'
|
| 38 |
+
# }
|
| 39 |
+
# au_labels = [
|
| 40 |
+
# "au1",
|
| 41 |
+
# "au12",
|
| 42 |
+
# "au15",
|
| 43 |
+
# "au17",
|
| 44 |
+
# "au2",
|
| 45 |
+
# "au20",
|
| 46 |
+
# "au25",
|
| 47 |
+
# "au26",
|
| 48 |
+
# "au4",
|
| 49 |
+
# "au5",
|
| 50 |
+
# "au6",
|
| 51 |
+
# "au9"
|
| 52 |
+
# ]
|
| 53 |
+
# col=[au_to_movements[i] for i in au_labels]
|
| 54 |
+
# def binary_focal_loss(gamma=2.0, alpha=0.25):
|
| 55 |
+
# def focal_loss(y_true, y_pred):
|
| 56 |
+
# # Define epsilon to avoid log(0)
|
| 57 |
+
# epsilon = tf.keras.backend.epsilon()
|
| 58 |
+
# # Clip predictions to prevent log(0) and log(1 - 0)
|
| 59 |
+
# y_pred = tf.clip_by_value(y_pred, epsilon, 1.0 - epsilon)
|
| 60 |
+
# # Compute the focal loss
|
| 61 |
+
# fl = - alpha * (y_true * (1 - y_pred)**gamma * tf.math.log(y_pred)
|
| 62 |
+
# + (1 - y_true) * (y_pred**gamma) * tf.math.log(1 - y_pred))
|
| 63 |
+
# return tf.reduce_mean(fl, axis=-1)
|
| 64 |
+
# return focal_loss
|
| 65 |
+
|
| 66 |
+
# loss = binary_focal_loss(gamma=2.0, alpha=0.25)
|
| 67 |
+
|
| 68 |
+
# # Function to read video frames into a list
|
| 69 |
+
# def read_video_frames(video_path):
|
| 70 |
+
# cap = cv2.VideoCapture(video_path)
|
| 71 |
+
# frames = []
|
| 72 |
+
# while True:
|
| 73 |
+
# ret, frame = cap.read()
|
| 74 |
+
# if not ret:
|
| 75 |
+
# break
|
| 76 |
+
# frames.append(frame)
|
| 77 |
+
|
| 78 |
+
# cap.release()
|
| 79 |
+
# return frames
|
| 80 |
+
|
| 81 |
+
# # Function to process frames and make predictions
|
| 82 |
+
# def process_frames(frames, model):
|
| 83 |
+
# frames = [get_face(frame) for frame in tqdm(frames[:len(frames)-1])]
|
| 84 |
+
# st.text(f"face shape : {frames[0].shape}")
|
| 85 |
+
# frame_array = np.array(frames)
|
| 86 |
+
# preds = model.predict(frame_array)
|
| 87 |
+
# print(preds[0])
|
| 88 |
+
# predicted_labels = np.zeros_like(preds,dtype='int')
|
| 89 |
+
# for i in range(12):
|
| 90 |
+
# predicted_labels[:, i] = (preds[:, i] > threshold[i]).astype(int)
|
| 91 |
+
# return predicted_labels
|
| 92 |
+
|
| 93 |
+
# # Function to save predictions to a CSV file
|
| 94 |
+
# def save_predictions_to_csv(predictions, filename="predictions.csv"):
|
| 95 |
+
# df = pd.DataFrame(predictions,columns=col)
|
| 96 |
+
# df.to_csv(filename, index=False)
|
| 97 |
+
# return filename
|
| 98 |
+
|
| 99 |
+
# # Load your Keras model
|
| 100 |
+
# def load_model():
|
| 101 |
+
# model = tf.keras.models.load_model('incept_v3_10fps_full_0.4.keras',
|
| 102 |
+
# custom_objects={'binary_focal_loss': binary_focal_loss})
|
| 103 |
+
# return model
|
| 104 |
+
|
| 105 |
+
# # Streamlit app
|
| 106 |
+
# def main():
|
| 107 |
+
# st.title("Video Frame Prediction App")
|
| 108 |
+
|
| 109 |
+
# # Upload video file
|
| 110 |
+
# uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
|
| 111 |
+
|
| 112 |
+
# if uploaded_file is not None:
|
| 113 |
+
# with NamedTemporaryFile(delete=False) as tmp_file:
|
| 114 |
+
# tmp_file.write(uploaded_file.read())
|
| 115 |
+
# video_path = tmp_file.name
|
| 116 |
+
|
| 117 |
+
# # Load the model
|
| 118 |
+
# model = load_model()
|
| 119 |
+
|
| 120 |
+
# # Predict button
|
| 121 |
+
# if st.button("Predict"):
|
| 122 |
+
# # Read frames from video
|
| 123 |
+
# st.text("Reading video frames...")
|
| 124 |
+
# frames = read_video_frames(video_path)
|
| 125 |
+
# st.text(f"Total frames read: {len(frames)}")
|
| 126 |
+
|
| 127 |
+
# # Process frames and make predictions
|
| 128 |
+
# st.text("Processing frames and making predictions...")
|
| 129 |
+
# predictions = process_frames(frames, model)
|
| 130 |
+
# st.text("Predictions completed!")
|
| 131 |
+
|
| 132 |
+
# # Save predictions to CSV
|
| 133 |
+
# csv_file_path = save_predictions_to_csv(predictions)
|
| 134 |
+
# st.text("Predictions saved to CSV!")
|
| 135 |
+
|
| 136 |
+
# # Make CSV downloadable
|
| 137 |
+
# with open(csv_file_path, "rb") as f:
|
| 138 |
+
# st.download_button(
|
| 139 |
+
# label="Download CSV",
|
| 140 |
+
# data=f,
|
| 141 |
+
# file_name="predictions.csv",
|
| 142 |
+
# mime="text/csv"
|
| 143 |
+
# )
|
| 144 |
+
|
| 145 |
+
# # Clean up the temporary file
|
| 146 |
+
# os.remove(video_path)
|
| 147 |
+
|
| 148 |
+
# if __name__ == "__main__":
|
| 149 |
+
# main()
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
import os
|
| 153 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 154 |
+
|
| 155 |
+
import streamlit as st
|
| 156 |
+
import cv2
|
| 157 |
+
from tqdm import tqdm
|
| 158 |
+
import numpy as np
|
| 159 |
+
import tensorflow as tf
|
| 160 |
+
import pandas as pd
|
| 161 |
+
from tempfile import NamedTemporaryFile
|
| 162 |
+
from functions import *
|
| 163 |
+
|
| 164 |
+
threshold = [
|
| 165 |
+
0.6827917, 0.7136434, 0.510756, 0.56771123, 0.49417764, 0.45892453,
|
| 166 |
+
0.32996163, 0.5038406, 0.44855, 0.32959282, 0.45619836, 0.4969851
|
| 167 |
+
]
|
| 168 |
+
|
| 169 |
+
au_to_movements = {
|
| 170 |
+
'au1': 'inner brow raiser',
|
| 171 |
+
'au2': 'outer brow raiser',
|
| 172 |
+
'au4': 'brow lowerer',
|
| 173 |
+
'au5': 'upper lid raiser',
|
| 174 |
+
'au6': 'cheek raiser',
|
| 175 |
+
'au9': 'nose wrinkler',
|
| 176 |
+
'au12': 'lip corner puller',
|
| 177 |
+
'au15': 'lip corner depressor',
|
| 178 |
+
'au17': 'chin raiser',
|
| 179 |
+
'au20': 'lip stretcher',
|
| 180 |
+
'au25': 'lips part',
|
| 181 |
+
'au26': 'jaw drop'
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
au_labels = [
|
| 185 |
+
"au1", "au12", "au15", "au17", "au2", "au20",
|
| 186 |
+
"au25", "au26", "au4", "au5", "au6", "au9"
|
| 187 |
+
]
|
| 188 |
+
|
| 189 |
+
col = [au_to_movements[i] for i in au_labels]
|
| 190 |
+
|
| 191 |
+
def binary_focal_loss(gamma=2.0, alpha=0.25):
|
| 192 |
+
def focal_loss(y_true, y_pred):
|
| 193 |
+
epsilon = tf.keras.backend.epsilon()
|
| 194 |
+
y_pred = tf.clip_by_value(y_pred, epsilon, 1.0 - epsilon)
|
| 195 |
+
fl = - alpha * (y_true * (1 - y_pred)**gamma * tf.math.log(y_pred)
|
| 196 |
+
+ (1 - y_true) * (y_pred**gamma) * tf.math.log(1 - y_pred))
|
| 197 |
+
return tf.reduce_mean(fl, axis=-1)
|
| 198 |
+
return focal_loss
|
| 199 |
+
|
| 200 |
+
loss = binary_focal_loss(gamma=2.0, alpha=0.25)
|
| 201 |
+
|
| 202 |
+
# Function to read video frames into a list and get timestamps
|
| 203 |
+
def read_video_frames(video_path):
|
| 204 |
+
cap = cv2.VideoCapture(video_path)
|
| 205 |
+
frames = []
|
| 206 |
+
faces=[]
|
| 207 |
+
timestamps = []
|
| 208 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 209 |
+
while True:
|
| 210 |
+
ret, frame = cap.read()
|
| 211 |
+
if not ret:
|
| 212 |
+
break
|
| 213 |
+
face=get_face(frame)
|
| 214 |
+
if face is not None:
|
| 215 |
+
faces.append(face)
|
| 216 |
+
frames.append(frame)
|
| 217 |
+
timestamps.append(cap.get(cv2.CAP_PROP_POS_MSEC) / 1000.0) # Time in seconds
|
| 218 |
+
|
| 219 |
+
cap.release()
|
| 220 |
+
return frames,faces, timestamps
|
| 221 |
+
|
| 222 |
+
# Function to process frames and make predictions
|
| 223 |
+
def process_frames(frames, model):
|
| 224 |
+
frame_array = np.array(frames)
|
| 225 |
+
preds = model.predict(frame_array)
|
| 226 |
+
predicted_labels = np.zeros_like(preds, dtype='int')
|
| 227 |
+
for i in range(12):
|
| 228 |
+
predicted_labels[:, i] = (preds[:, i] > threshold[i]).astype(int)
|
| 229 |
+
return predicted_labels
|
| 230 |
+
|
| 231 |
+
# Function to save predictions to a CSV file with timestamps
|
| 232 |
+
def save_predictions_to_csv(predictions, timestamps, filename="predictions.csv"):
|
| 233 |
+
df = pd.DataFrame(predictions, columns=col)
|
| 234 |
+
df['timestamp'] = timestamps
|
| 235 |
+
df.set_index('timestamp', inplace=True)
|
| 236 |
+
df.to_csv(filename)
|
| 237 |
+
return filename
|
| 238 |
+
|
| 239 |
+
# Load your Keras model
|
| 240 |
+
def load_model():
|
| 241 |
+
model = tf.keras.models.load_model('incept_v3_10fps_full_0.4.keras',
|
| 242 |
+
custom_objects={'binary_focal_loss': binary_focal_loss})
|
| 243 |
+
return model
|
| 244 |
+
|
| 245 |
+
# Streamlit app
|
| 246 |
+
def main():
|
| 247 |
+
st.title("Facial action unit detection")
|
| 248 |
+
|
| 249 |
+
uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
|
| 250 |
+
|
| 251 |
+
if uploaded_file is not None:
|
| 252 |
+
with NamedTemporaryFile(delete=False) as tmp_file:
|
| 253 |
+
tmp_file.write(uploaded_file.read())
|
| 254 |
+
video_path = tmp_file.name
|
| 255 |
+
|
| 256 |
+
model = load_model()
|
| 257 |
+
|
| 258 |
+
if st.button("Predict"):
|
| 259 |
+
st.text("Reading video frames...")
|
| 260 |
+
frames,faces, timestamps = read_video_frames(video_path)
|
| 261 |
+
st.text(f"Total frames in which faces found: {len(faces)}")
|
| 262 |
+
|
| 263 |
+
st.text("Processing frames and making predictions...")
|
| 264 |
+
predictions = process_frames(faces, model)
|
| 265 |
+
st.text("Predictions completed!")
|
| 266 |
+
|
| 267 |
+
csv_file_path = save_predictions_to_csv(predictions, timestamps)
|
| 268 |
+
st.text("Predictions saved to CSV!")
|
| 269 |
+
|
| 270 |
+
with open(csv_file_path, "rb") as f:
|
| 271 |
+
st.download_button(
|
| 272 |
+
label="Download CSV",
|
| 273 |
+
data=f,
|
| 274 |
+
file_name="predictions.csv",
|
| 275 |
+
mime="text/csv"
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
os.remove(video_path)
|
| 279 |
+
|
| 280 |
+
if __name__ == "__main__":
|
| 281 |
+
main()
|