Spaces:
Build error
Build error
| # -*- coding: utf-8 -*- Nour Eddine Zekaoui et al. | |
| import os | |
| import torch | |
| import spaces | |
| import gradio as gr | |
| from peft import PeftModel | |
| from transformers import ( | |
| AutoTokenizer, | |
| BitsAndBytesConfig, | |
| AutoModelForCausalLM) | |
| # Set an environment variable | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| def generate_prompt(instruction, input=None): | |
| if input: | |
| return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # noqa: E501 | |
| ### Instruction: | |
| {instruction} | |
| ### Input: | |
| {input} | |
| ### Response: | |
| """ | |
| else: | |
| return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. # noqa: E501 | |
| ### Instruction: | |
| {instruction} | |
| ### Response: | |
| """ | |
| based_model_path = "meta-llama/Meta-Llama-3-8B" | |
| lora_weights = "NouRed/BioMed-Tuned-Llama-3-8b" | |
| load_in_4bit=True | |
| bnb_4bit_use_double_quant=True | |
| bnb_4bit_quant_type="nf4" | |
| bnb_4bit_compute_dtype=torch.bfloat16 | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| based_model_path, | |
| ) | |
| tokenizer.padding_side = 'right' | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.add_eos_token = True | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=load_in_4bit, | |
| bnb_4bit_use_double_quant=bnb_4bit_use_double_quant, | |
| bnb_4bit_quant_type=bnb_4bit_quant_type, | |
| bnb_4bit_compute_dtype=bnb_4bit_compute_dtype | |
| ) | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| based_model_path, | |
| device_map="auto", | |
| attn_implementation="flash_attention_2", # I have an A100 GPU with 40GB of RAM π | |
| quantization_config=quantization_config, | |
| ) | |
| model = PeftModel.from_pretrained( | |
| base_model, | |
| lora_weights, | |
| torch_dtype=torch.float16, | |
| ) | |
| def generate( | |
| instruction, | |
| input=None, | |
| temperature=0.1, | |
| top_p=0.9, | |
| top_k=40, | |
| num_beams=4, | |
| max_new_tokens=128, | |
| do_sample=True, | |
| **kwargs): | |
| prompt = generate_prompt(instruction, input) | |
| inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| generated_ids = model.generate( | |
| **inputs, | |
| top_p=top_p, | |
| top_k=top_k, | |
| do_sample=do_sample, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| output = tokenizer.decode( | |
| generated_ids[0], | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=True | |
| ) | |
| response = output.split("### Response:")[1].strip() | |
| return response | |
| description = """ | |
| <div style="justify-content: center; text-align: center;"> | |
| <div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
| <h2> | |
| <p> BioMed-LLaMa-3: Effecient Intruction Fine-Tuning in Biomedical Language</p> | |
| </h2> | |
| </div> | |
| <div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
| <a href="https://huggingface.co/NouRed/BioMed-Tuned-Llama-3-8b" target="_blank"><img src="https://img.shields.io/badge/π€_Hugging_Face-BioMedLLaMa3-orange" alt="HF HUB"></a> | |
| <a href="https://colab.research.google.com/drive/1PDa8b5TqpAYxDVlF0Elv32KOM2kFaXJh" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Inference Notebook"></a> | |
| </div> | |
| </div> | |
| """ | |
| gr.Interface( | |
| fn=generate, | |
| inputs=[ | |
| gr.components.Textbox( | |
| lines=2, | |
| label="Instruction", | |
| placeholder="Tell me about Covid-19?", | |
| ), | |
| gr.components.Textbox(lines=2, label="Input", placeholder="none"), | |
| gr.components.Slider( | |
| minimum=0, maximum=1, value=0.1, label="Temperature" | |
| ), | |
| gr.components.Slider( | |
| minimum=0, maximum=1, value=0.9, label="Top p" | |
| ), | |
| gr.components.Slider( | |
| minimum=0, maximum=100, step=1, value=40, label="Top k" | |
| ), | |
| gr.components.Slider( | |
| minimum=1, maximum=4, step=1, value=4, label="Beams" | |
| ), | |
| gr.components.Slider( | |
| minimum=1, maximum=2000, step=1, value=128, label="Max tokens" | |
| ), | |
| gr.components.Checkbox( | |
| value=True, label="Do Sample", info="Do you want to use sampling during text generation?" | |
| ), | |
| ], | |
| outputs=[ | |
| gr.components.Textbox( | |
| lines=5, | |
| label="Output", | |
| ) | |
| ], | |
| examples=[ | |
| ["Suggest treatment for pneumonia", "", 0.1, 0.9, 40, 4, 128, True], | |
| ["I have a sore throat, slight cough, tiredness. should i get tested fro covid 19?", "", 0.1, 0.9, 40, 4, 128, True], | |
| ["Husband of this patient asked me how to treat premature ejaculation and how to increase her libido.", "", 0.1, 0.9, 40, 4, 128, True], | |
| ], | |
| theme="soft", | |
| description=description, # noqa: E501 | |
| ).launch() |