Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -36,51 +36,44 @@ def generate_prompt(instruction, input=None):
|
|
| 36 |
### Response:
|
| 37 |
"""
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 52 |
-
based_model_path,
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
tokenizer.padding_side = 'right'
|
| 56 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 57 |
-
tokenizer.add_eos_token = True
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
quantization_config = BitsAndBytesConfig(
|
| 61 |
-
load_in_4bit=load_in_4bit,
|
| 62 |
-
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
|
| 63 |
-
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
| 64 |
-
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype
|
| 65 |
)
|
| 66 |
-
|
| 67 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 68 |
-
based_model_path,
|
| 69 |
-
device_map="auto",
|
| 70 |
-
attn_implementation="flash_attention_2", # I have an A100 GPU with 40GB of RAM 😎
|
| 71 |
-
quantization_config=quantization_config,
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
model = PeftModel.from_pretrained(
|
| 75 |
-
base_model,
|
| 76 |
-
lora_weights,
|
| 77 |
-
torch_dtype=torch.float16,
|
| 78 |
-
)
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
|
| 86 |
@spaces.GPU
|
|
|
|
| 36 |
### Response:
|
| 37 |
"""
|
| 38 |
|
| 39 |
+
based_model_path = "meta-llama/Meta-Llama-3-8B"
|
| 40 |
+
lora_weights = "NouRed/BioMed-Tuned-Llama-3-8b"
|
| 41 |
+
|
| 42 |
+
load_in_4bit=True
|
| 43 |
+
bnb_4bit_use_double_quant=True
|
| 44 |
+
bnb_4bit_quant_type="nf4"
|
| 45 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 46 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 50 |
+
based_model_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
tokenizer.padding_side = 'right'
|
| 54 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 55 |
+
tokenizer.add_eos_token = True
|
| 56 |
+
|
| 57 |
|
| 58 |
+
quantization_config = BitsAndBytesConfig(
|
| 59 |
+
load_in_4bit=load_in_4bit,
|
| 60 |
+
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
|
| 61 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
| 62 |
+
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype
|
| 63 |
+
)
|
| 64 |
|
| 65 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 66 |
+
based_model_path,
|
| 67 |
+
device_map="auto",
|
| 68 |
+
attn_implementation="flash_attention_2", # I have an A100 GPU with 40GB of RAM 😎
|
| 69 |
+
quantization_config=quantization_config,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
model = PeftModel.from_pretrained(
|
| 73 |
+
base_model,
|
| 74 |
+
lora_weights,
|
| 75 |
+
torch_dtype=torch.float16,
|
| 76 |
+
)
|
| 77 |
|
| 78 |
|
| 79 |
@spaces.GPU
|