Spaces:
Sleeping
Sleeping
| import torch | |
| from torch.nn.utils.rnn import pad_sequence | |
| from s3prl.upstream.interfaces import UpstreamBase | |
| from omegaconf import OmegaConf | |
| import torch.nn.functional as F | |
| def load_model(filepath): | |
| state = torch.load(filepath, map_location=lambda storage, loc: storage) | |
| cfg = state["cfg"] | |
| task = cfg.task | |
| model = cfg.model | |
| return model, cfg, task | |
| ################### | |
| # UPSTREAM EXPERT # | |
| ################### | |
| class UpstreamExpert(UpstreamBase): | |
| def __init__(self, ckpt, **kwargs): | |
| super().__init__(**kwargs) | |
| model, cfg, task = load_model(ckpt) | |
| self.model = model | |
| self.task = task | |
| def forward(self, wavs): | |
| if self.task.normalize: | |
| wavs = [F.layer_norm(wav, wav.shape) for wav in wavs] | |
| device = wavs[0].device | |
| wav_lengths = torch.LongTensor([len(wav) for wav in wavs]).to(device) | |
| wav_padding_mask = ~torch.lt( | |
| torch.arange(max(wav_lengths)).unsqueeze(0).to(device), | |
| wav_lengths.unsqueeze(1), | |
| ) | |
| padded_wav = pad_sequence(wavs, batch_first=True) | |
| features, feat_padding_mask = self.model.extract_features( | |
| padded_wav, | |
| padding_mask=wav_padding_mask, | |
| mask=None, | |
| ) | |
| return { | |
| "default": features, | |
| } | |