Spaces:
Sleeping
Sleeping
Init commit
Browse files
inference_kathbadh.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import math
|
| 4 |
+
import torch
|
| 5 |
+
import torchaudio
|
| 6 |
+
from models.ecapa_tdnn import ECAPA_TDNN_SMALL
|
| 7 |
+
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
score_fn = nn.CosineSimilarity()
|
| 10 |
+
def load_model(checkpoint):
|
| 11 |
+
model = ECAPA_TDNN_SMALL(
|
| 12 |
+
feat_dim=1024, feat_type="wavlm_large", config_path=None
|
| 13 |
+
)
|
| 14 |
+
state_dict = torch.load(checkpoint, map_location=lambda storage, loc: storage)
|
| 15 |
+
model.load_state_dict(state_dict, strict=False)
|
| 16 |
+
return model
|
| 17 |
+
|
| 18 |
+
def inference_kathbadh( wav1, wav2):
|
| 19 |
+
checkpoint = r"C:\Users\KHADGA JYOTH ALLI\Desktop\programming\Class Work\IITJ\Speech Understanding\Speaker-verification\wavlm_large_kathbadh_finetune.pth"
|
| 20 |
+
model = load_model(checkpoint)
|
| 21 |
+
model.eval()
|
| 22 |
+
wav1, sr = torchaudio.load(wav1)
|
| 23 |
+
wav2, sr = torchaudio.load(wav2)
|
| 24 |
+
# input = torch.cat([wav1, wav2], dim=0)
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
embedding1 = model(wav1)
|
| 27 |
+
embedding2 = model(wav2)
|
| 28 |
+
score = score_fn(embedding1, embedding2)
|
| 29 |
+
return score.item()
|
| 30 |
+
|
models/__pycache__/ecapa_tdnn.cpython-310.pyc
ADDED
|
Binary file (9.2 kB). View file
|
|
|
models/__pycache__/ecapa_tdnn.cpython-39.pyc
ADDED
|
Binary file (9.13 kB). View file
|
|
|
models/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (2.04 kB). View file
|
|
|
models/__pycache__/utils.cpython-39.pyc
ADDED
|
Binary file (2.02 kB). View file
|
|
|
models/ecapa_tdnn.py
ADDED
|
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import torchaudio.transforms as trans
|
| 7 |
+
from .utils import UpstreamExpert
|
| 8 |
+
import s3prl.hub as hub
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
""" Res2Conv1d + BatchNorm1d + ReLU
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class Res2Conv1dReluBn(nn.Module):
|
| 16 |
+
"""
|
| 17 |
+
in_channels == out_channels == channels
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
channels,
|
| 23 |
+
kernel_size=1,
|
| 24 |
+
stride=1,
|
| 25 |
+
padding=0,
|
| 26 |
+
dilation=1,
|
| 27 |
+
bias=True,
|
| 28 |
+
scale=4,
|
| 29 |
+
):
|
| 30 |
+
super().__init__()
|
| 31 |
+
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
|
| 32 |
+
self.scale = scale
|
| 33 |
+
self.width = channels // scale
|
| 34 |
+
self.nums = scale if scale == 1 else scale - 1
|
| 35 |
+
|
| 36 |
+
self.convs = []
|
| 37 |
+
self.bns = []
|
| 38 |
+
for i in range(self.nums):
|
| 39 |
+
self.convs.append(
|
| 40 |
+
nn.Conv1d(
|
| 41 |
+
self.width,
|
| 42 |
+
self.width,
|
| 43 |
+
kernel_size,
|
| 44 |
+
stride,
|
| 45 |
+
padding,
|
| 46 |
+
dilation,
|
| 47 |
+
bias=bias,
|
| 48 |
+
)
|
| 49 |
+
)
|
| 50 |
+
self.bns.append(nn.BatchNorm1d(self.width))
|
| 51 |
+
self.convs = nn.ModuleList(self.convs)
|
| 52 |
+
self.bns = nn.ModuleList(self.bns)
|
| 53 |
+
|
| 54 |
+
def forward(self, x):
|
| 55 |
+
out = []
|
| 56 |
+
spx = torch.split(x, self.width, 1)
|
| 57 |
+
for i in range(self.nums):
|
| 58 |
+
if i == 0:
|
| 59 |
+
sp = spx[i]
|
| 60 |
+
else:
|
| 61 |
+
sp = sp + spx[i]
|
| 62 |
+
# Order: conv -> relu -> bn
|
| 63 |
+
sp = self.convs[i](sp)
|
| 64 |
+
sp = self.bns[i](F.relu(sp))
|
| 65 |
+
out.append(sp)
|
| 66 |
+
if self.scale != 1:
|
| 67 |
+
out.append(spx[self.nums])
|
| 68 |
+
out = torch.cat(out, dim=1)
|
| 69 |
+
|
| 70 |
+
return out
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
""" Conv1d + BatchNorm1d + ReLU
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class Conv1dReluBn(nn.Module):
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
in_channels,
|
| 81 |
+
out_channels,
|
| 82 |
+
kernel_size=1,
|
| 83 |
+
stride=1,
|
| 84 |
+
padding=0,
|
| 85 |
+
dilation=1,
|
| 86 |
+
bias=True,
|
| 87 |
+
):
|
| 88 |
+
super().__init__()
|
| 89 |
+
self.conv = nn.Conv1d(
|
| 90 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias
|
| 91 |
+
)
|
| 92 |
+
self.bn = nn.BatchNorm1d(out_channels)
|
| 93 |
+
|
| 94 |
+
def forward(self, x):
|
| 95 |
+
return self.bn(F.relu(self.conv(x)))
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
""" The SE connection of 1D case.
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class SE_Connect(nn.Module):
|
| 103 |
+
def __init__(self, channels, se_bottleneck_dim=128):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
|
| 106 |
+
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
|
| 107 |
+
|
| 108 |
+
def forward(self, x):
|
| 109 |
+
out = x.mean(dim=2)
|
| 110 |
+
out = F.relu(self.linear1(out))
|
| 111 |
+
out = torch.sigmoid(self.linear2(out))
|
| 112 |
+
out = x * out.unsqueeze(2)
|
| 113 |
+
|
| 114 |
+
return out
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
""" SE-Res2Block of the ECAPA-TDNN architecture.
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
|
| 122 |
+
# return nn.Sequential(
|
| 123 |
+
# Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
|
| 124 |
+
# Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
|
| 125 |
+
# Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
|
| 126 |
+
# SE_Connect(channels)
|
| 127 |
+
# )
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class SE_Res2Block(nn.Module):
|
| 131 |
+
def __init__(
|
| 132 |
+
self,
|
| 133 |
+
in_channels,
|
| 134 |
+
out_channels,
|
| 135 |
+
kernel_size,
|
| 136 |
+
stride,
|
| 137 |
+
padding,
|
| 138 |
+
dilation,
|
| 139 |
+
scale,
|
| 140 |
+
se_bottleneck_dim,
|
| 141 |
+
):
|
| 142 |
+
super().__init__()
|
| 143 |
+
self.Conv1dReluBn1 = Conv1dReluBn(
|
| 144 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
| 145 |
+
)
|
| 146 |
+
self.Res2Conv1dReluBn = Res2Conv1dReluBn(
|
| 147 |
+
out_channels, kernel_size, stride, padding, dilation, scale=scale
|
| 148 |
+
)
|
| 149 |
+
self.Conv1dReluBn2 = Conv1dReluBn(
|
| 150 |
+
out_channels, out_channels, kernel_size=1, stride=1, padding=0
|
| 151 |
+
)
|
| 152 |
+
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
|
| 153 |
+
|
| 154 |
+
self.shortcut = None
|
| 155 |
+
if in_channels != out_channels:
|
| 156 |
+
self.shortcut = nn.Conv1d(
|
| 157 |
+
in_channels=in_channels,
|
| 158 |
+
out_channels=out_channels,
|
| 159 |
+
kernel_size=1,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
def forward(self, x):
|
| 163 |
+
residual = x
|
| 164 |
+
if self.shortcut:
|
| 165 |
+
residual = self.shortcut(x)
|
| 166 |
+
|
| 167 |
+
x = self.Conv1dReluBn1(x)
|
| 168 |
+
x = self.Res2Conv1dReluBn(x)
|
| 169 |
+
x = self.Conv1dReluBn2(x)
|
| 170 |
+
x = self.SE_Connect(x)
|
| 171 |
+
|
| 172 |
+
return x + residual
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
""" Attentive weighted mean and standard deviation pooling.
|
| 176 |
+
"""
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class AttentiveStatsPool(nn.Module):
|
| 180 |
+
def __init__(self, in_dim, attention_channels=128, global_context_att=False):
|
| 181 |
+
super().__init__()
|
| 182 |
+
self.global_context_att = global_context_att
|
| 183 |
+
|
| 184 |
+
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
|
| 185 |
+
if global_context_att:
|
| 186 |
+
self.linear1 = nn.Conv1d(
|
| 187 |
+
in_dim * 3, attention_channels, kernel_size=1
|
| 188 |
+
) # equals W and b in the paper
|
| 189 |
+
else:
|
| 190 |
+
self.linear1 = nn.Conv1d(
|
| 191 |
+
in_dim, attention_channels, kernel_size=1
|
| 192 |
+
) # equals W and b in the paper
|
| 193 |
+
self.linear2 = nn.Conv1d(
|
| 194 |
+
attention_channels, in_dim, kernel_size=1
|
| 195 |
+
) # equals V and k in the paper
|
| 196 |
+
|
| 197 |
+
def forward(self, x):
|
| 198 |
+
|
| 199 |
+
if self.global_context_att:
|
| 200 |
+
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
|
| 201 |
+
context_std = torch.sqrt(
|
| 202 |
+
torch.var(x, dim=-1, keepdim=True) + 1e-10
|
| 203 |
+
).expand_as(x)
|
| 204 |
+
x_in = torch.cat((x, context_mean, context_std), dim=1)
|
| 205 |
+
else:
|
| 206 |
+
x_in = x
|
| 207 |
+
|
| 208 |
+
# DON'T use ReLU here! In experiments, I find ReLU hard to converge.
|
| 209 |
+
alpha = torch.tanh(self.linear1(x_in))
|
| 210 |
+
# alpha = F.relu(self.linear1(x_in))
|
| 211 |
+
alpha = torch.softmax(self.linear2(alpha), dim=2)
|
| 212 |
+
mean = torch.sum(alpha * x, dim=2)
|
| 213 |
+
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2
|
| 214 |
+
std = torch.sqrt(residuals.clamp(min=1e-9))
|
| 215 |
+
return torch.cat([mean, std], dim=1)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class ECAPA_TDNN(nn.Module):
|
| 219 |
+
def __init__(
|
| 220 |
+
self,
|
| 221 |
+
feat_dim=80,
|
| 222 |
+
channels=512,
|
| 223 |
+
emb_dim=192,
|
| 224 |
+
global_context_att=False,
|
| 225 |
+
feat_type="fbank",
|
| 226 |
+
sr=16000,
|
| 227 |
+
feature_selection="hidden_states",
|
| 228 |
+
update_extract=False,
|
| 229 |
+
config_path=None,
|
| 230 |
+
):
|
| 231 |
+
super().__init__()
|
| 232 |
+
|
| 233 |
+
self.feat_type = feat_type
|
| 234 |
+
self.feature_selection = feature_selection
|
| 235 |
+
self.update_extract = update_extract
|
| 236 |
+
self.sr = sr
|
| 237 |
+
|
| 238 |
+
if feat_type == "fbank" or feat_type == "mfcc":
|
| 239 |
+
self.update_extract = False
|
| 240 |
+
|
| 241 |
+
win_len = int(sr * 0.025)
|
| 242 |
+
hop_len = int(sr * 0.01)
|
| 243 |
+
|
| 244 |
+
if feat_type == "fbank":
|
| 245 |
+
self.feature_extract = trans.MelSpectrogram(
|
| 246 |
+
sample_rate=sr,
|
| 247 |
+
n_fft=512,
|
| 248 |
+
win_length=win_len,
|
| 249 |
+
hop_length=hop_len,
|
| 250 |
+
f_min=0.0,
|
| 251 |
+
f_max=sr // 2,
|
| 252 |
+
pad=0,
|
| 253 |
+
n_mels=feat_dim,
|
| 254 |
+
)
|
| 255 |
+
elif feat_type == "mfcc":
|
| 256 |
+
melkwargs = {
|
| 257 |
+
"n_fft": 512,
|
| 258 |
+
"win_length": win_len,
|
| 259 |
+
"hop_length": hop_len,
|
| 260 |
+
"f_min": 0.0,
|
| 261 |
+
"f_max": sr // 2,
|
| 262 |
+
"pad": 0,
|
| 263 |
+
}
|
| 264 |
+
self.feature_extract = trans.MFCC(
|
| 265 |
+
sample_rate=sr, n_mfcc=feat_dim, log_mels=False, melkwargs=melkwargs
|
| 266 |
+
)
|
| 267 |
+
else:
|
| 268 |
+
if config_path is None:
|
| 269 |
+
self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type)
|
| 270 |
+
else:
|
| 271 |
+
self.feature_extract = UpstreamExpert(config_path)
|
| 272 |
+
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
|
| 273 |
+
self.feature_extract.model.encoder.layers[23].self_attn,
|
| 274 |
+
"fp32_attention",
|
| 275 |
+
):
|
| 276 |
+
self.feature_extract.model.encoder.layers[
|
| 277 |
+
23
|
| 278 |
+
].self_attn.fp32_attention = False
|
| 279 |
+
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
|
| 280 |
+
self.feature_extract.model.encoder.layers[11].self_attn,
|
| 281 |
+
"fp32_attention",
|
| 282 |
+
):
|
| 283 |
+
self.feature_extract.model.encoder.layers[
|
| 284 |
+
11
|
| 285 |
+
].self_attn.fp32_attention = False
|
| 286 |
+
|
| 287 |
+
self.feat_num = self.get_feat_num()
|
| 288 |
+
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
|
| 289 |
+
|
| 290 |
+
if feat_type != "fbank" and feat_type != "mfcc":
|
| 291 |
+
freeze_list = [
|
| 292 |
+
"final_proj",
|
| 293 |
+
"label_embs_concat",
|
| 294 |
+
"mask_emb",
|
| 295 |
+
"project_q",
|
| 296 |
+
"quantizer",
|
| 297 |
+
]
|
| 298 |
+
for name, param in self.feature_extract.named_parameters():
|
| 299 |
+
for freeze_val in freeze_list:
|
| 300 |
+
if freeze_val in name:
|
| 301 |
+
param.requires_grad = False
|
| 302 |
+
break
|
| 303 |
+
|
| 304 |
+
if not self.update_extract:
|
| 305 |
+
for param in self.feature_extract.parameters():
|
| 306 |
+
param.requires_grad = False
|
| 307 |
+
|
| 308 |
+
self.instance_norm = nn.InstanceNorm1d(feat_dim)
|
| 309 |
+
# self.channels = [channels] * 4 + [channels * 3]
|
| 310 |
+
self.channels = [channels] * 4 + [1536]
|
| 311 |
+
|
| 312 |
+
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
|
| 313 |
+
self.layer2 = SE_Res2Block(
|
| 314 |
+
self.channels[0],
|
| 315 |
+
self.channels[1],
|
| 316 |
+
kernel_size=3,
|
| 317 |
+
stride=1,
|
| 318 |
+
padding=2,
|
| 319 |
+
dilation=2,
|
| 320 |
+
scale=8,
|
| 321 |
+
se_bottleneck_dim=128,
|
| 322 |
+
)
|
| 323 |
+
self.layer3 = SE_Res2Block(
|
| 324 |
+
self.channels[1],
|
| 325 |
+
self.channels[2],
|
| 326 |
+
kernel_size=3,
|
| 327 |
+
stride=1,
|
| 328 |
+
padding=3,
|
| 329 |
+
dilation=3,
|
| 330 |
+
scale=8,
|
| 331 |
+
se_bottleneck_dim=128,
|
| 332 |
+
)
|
| 333 |
+
self.layer4 = SE_Res2Block(
|
| 334 |
+
self.channels[2],
|
| 335 |
+
self.channels[3],
|
| 336 |
+
kernel_size=3,
|
| 337 |
+
stride=1,
|
| 338 |
+
padding=4,
|
| 339 |
+
dilation=4,
|
| 340 |
+
scale=8,
|
| 341 |
+
se_bottleneck_dim=128,
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
|
| 345 |
+
cat_channels = channels * 3
|
| 346 |
+
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
|
| 347 |
+
self.pooling = AttentiveStatsPool(
|
| 348 |
+
self.channels[-1],
|
| 349 |
+
attention_channels=128,
|
| 350 |
+
global_context_att=global_context_att,
|
| 351 |
+
)
|
| 352 |
+
self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
|
| 353 |
+
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
|
| 354 |
+
|
| 355 |
+
def get_feat_num(self):
|
| 356 |
+
self.feature_extract.eval()
|
| 357 |
+
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
|
| 358 |
+
with torch.no_grad():
|
| 359 |
+
features = self.feature_extract(wav)
|
| 360 |
+
select_feature = features[self.feature_selection]
|
| 361 |
+
if isinstance(select_feature, (list, tuple)):
|
| 362 |
+
return len(select_feature)
|
| 363 |
+
else:
|
| 364 |
+
return 1
|
| 365 |
+
|
| 366 |
+
def get_feat(self, x):
|
| 367 |
+
if self.update_extract:
|
| 368 |
+
x = self.feature_extract([sample for sample in x])
|
| 369 |
+
else:
|
| 370 |
+
with torch.no_grad():
|
| 371 |
+
if self.feat_type == "fbank" or self.feat_type == "mfcc":
|
| 372 |
+
x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len
|
| 373 |
+
else:
|
| 374 |
+
x = self.feature_extract([sample for sample in x])
|
| 375 |
+
|
| 376 |
+
if self.feat_type == "fbank":
|
| 377 |
+
x = x.log()
|
| 378 |
+
|
| 379 |
+
if self.feat_type != "fbank" and self.feat_type != "mfcc":
|
| 380 |
+
x = x[self.feature_selection]
|
| 381 |
+
if isinstance(x, (list, tuple)):
|
| 382 |
+
x = torch.stack(x, dim=0)
|
| 383 |
+
else:
|
| 384 |
+
x = x.unsqueeze(0)
|
| 385 |
+
norm_weights = (
|
| 386 |
+
F.softmax(self.feature_weight, dim=-1)
|
| 387 |
+
.unsqueeze(-1)
|
| 388 |
+
.unsqueeze(-1)
|
| 389 |
+
.unsqueeze(-1)
|
| 390 |
+
)
|
| 391 |
+
x = (norm_weights * x).sum(dim=0)
|
| 392 |
+
x = torch.transpose(x, 1, 2) + 1e-6
|
| 393 |
+
|
| 394 |
+
x = self.instance_norm(x)
|
| 395 |
+
return x
|
| 396 |
+
|
| 397 |
+
def forward(self, x):
|
| 398 |
+
x = self.get_feat(x)
|
| 399 |
+
|
| 400 |
+
out1 = self.layer1(x)
|
| 401 |
+
out2 = self.layer2(out1)
|
| 402 |
+
out3 = self.layer3(out2)
|
| 403 |
+
out4 = self.layer4(out3)
|
| 404 |
+
|
| 405 |
+
out = torch.cat([out2, out3, out4], dim=1)
|
| 406 |
+
out = F.relu(self.conv(out))
|
| 407 |
+
out = self.bn(self.pooling(out))
|
| 408 |
+
out = self.linear(out)
|
| 409 |
+
|
| 410 |
+
return out
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
def ECAPA_TDNN_SMALL(
|
| 414 |
+
feat_dim,
|
| 415 |
+
emb_dim=256,
|
| 416 |
+
feat_type="fbank",
|
| 417 |
+
sr=16000,
|
| 418 |
+
feature_selection="hidden_states",
|
| 419 |
+
update_extract=False,
|
| 420 |
+
config_path=None,
|
| 421 |
+
):
|
| 422 |
+
return ECAPA_TDNN(
|
| 423 |
+
feat_dim=feat_dim,
|
| 424 |
+
channels=512,
|
| 425 |
+
emb_dim=emb_dim,
|
| 426 |
+
feat_type=feat_type,
|
| 427 |
+
sr=sr,
|
| 428 |
+
feature_selection=feature_selection,
|
| 429 |
+
update_extract=update_extract,
|
| 430 |
+
config_path=config_path,
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
if __name__ == "__main__":
|
| 435 |
+
x = torch.zeros(2, 32000)
|
| 436 |
+
model = ECAPA_TDNN_SMALL(
|
| 437 |
+
feat_dim=768,
|
| 438 |
+
emb_dim=256,
|
| 439 |
+
feat_type="hubert_base",
|
| 440 |
+
feature_selection="hidden_states",
|
| 441 |
+
update_extract=False,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
out = model(x)
|
| 445 |
+
# print(model)
|
| 446 |
+
print(out.shape)
|
models/utils.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 3 |
+
from s3prl.upstream.interfaces import UpstreamBase
|
| 4 |
+
from omegaconf import OmegaConf
|
| 5 |
+
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
def load_model(filepath):
|
| 9 |
+
state = torch.load(filepath, map_location=lambda storage, loc: storage)
|
| 10 |
+
cfg = state["cfg"]
|
| 11 |
+
|
| 12 |
+
task = cfg.task
|
| 13 |
+
model = cfg.model
|
| 14 |
+
|
| 15 |
+
return model, cfg, task
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
###################
|
| 19 |
+
# UPSTREAM EXPERT #
|
| 20 |
+
###################
|
| 21 |
+
class UpstreamExpert(UpstreamBase):
|
| 22 |
+
def __init__(self, ckpt, **kwargs):
|
| 23 |
+
super().__init__(**kwargs)
|
| 24 |
+
|
| 25 |
+
model, cfg, task = load_model(ckpt)
|
| 26 |
+
self.model = model
|
| 27 |
+
self.task = task
|
| 28 |
+
|
| 29 |
+
def forward(self, wavs):
|
| 30 |
+
if self.task.normalize:
|
| 31 |
+
wavs = [F.layer_norm(wav, wav.shape) for wav in wavs]
|
| 32 |
+
|
| 33 |
+
device = wavs[0].device
|
| 34 |
+
wav_lengths = torch.LongTensor([len(wav) for wav in wavs]).to(device)
|
| 35 |
+
wav_padding_mask = ~torch.lt(
|
| 36 |
+
torch.arange(max(wav_lengths)).unsqueeze(0).to(device),
|
| 37 |
+
wav_lengths.unsqueeze(1),
|
| 38 |
+
)
|
| 39 |
+
padded_wav = pad_sequence(wavs, batch_first=True)
|
| 40 |
+
|
| 41 |
+
features, feat_padding_mask = self.model.extract_features(
|
| 42 |
+
padded_wav,
|
| 43 |
+
padding_mask=wav_padding_mask,
|
| 44 |
+
mask=None,
|
| 45 |
+
)
|
| 46 |
+
return {
|
| 47 |
+
"default": features,
|
| 48 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
torch
|
| 3 |
+
torchaudio
|
| 4 |
+
s3prl
|
| 5 |
+
soundfile
|