Spaces:
Running
Running
| import gradio as gr | |
| from loadimg import load_img | |
| import spaces | |
| from transformers import AutoModelForImageSegmentation | |
| import torch | |
| from torchvision import transforms | |
| from typing import Union, Tuple | |
| from PIL import Image | |
| torch.set_float32_matmul_precision(["high", "highest"][0]) | |
| birefnet = AutoModelForImageSegmentation.from_pretrained( | |
| "ZhengPeng7/BiRefNet", trust_remote_code=True | |
| ) | |
| birefnet.to("cpu") | |
| transform_image = transforms.Compose( | |
| [ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| def fn(image: Union[Image.Image, str]) -> Tuple[Image.Image, Image.Image]: | |
| im = load_img(image, output_type="pil") | |
| im = im.convert("RGB") | |
| origin = im.copy() | |
| processed_image = process(im) | |
| return (origin, processed_image) | |
| def process(image: Image.Image) -> Image.Image: | |
| image_size = image.size | |
| input_images = transform_image(image).unsqueeze(0).to("cpu") | |
| # Prediction | |
| with torch.no_grad(): | |
| preds = birefnet(input_images)[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| mask = pred_pil.resize(image_size) | |
| image.putalpha(mask) | |
| return image | |
| slider1 = gr.ImageSlider(label="Processed Image", type="pil", format="png") | |
| slider2 = gr.ImageSlider(label="Processed Image from URL", type="pil", format="png") | |
| image_upload = gr.Image(label="Upload an image") | |
| url_input = gr.Textbox(label="Paste an image URL") | |
| tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, api_name="image") | |
| tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, api_name="text") | |
| demo = gr.TabbedInterface( | |
| [tab1, tab2], ["Image Upload", "URL Input"], title="β Image Background Removal β" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(show_error=True) |