import gradio as gr from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms from typing import Union, Tuple from PIL import Image torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cpu") transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def fn(image: Union[Image.Image, str]) -> Tuple[Image.Image, Image.Image]: im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() processed_image = process(im) return (origin, processed_image) @spaces.GPU def process(image: Image.Image) -> Image.Image: image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cpu") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image slider1 = gr.ImageSlider(label="Processed Image", type="pil", format="png") slider2 = gr.ImageSlider(label="Processed Image from URL", type="pil", format="png") image_upload = gr.Image(label="Upload an image") url_input = gr.Textbox(label="Paste an image URL") tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, api_name="image") tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, api_name="text") demo = gr.TabbedInterface( [tab1, tab2], ["Image Upload", "URL Input"], title="✂ Image Background Removal ✂" ) if __name__ == "__main__": demo.launch(show_error=True)