2_input_IMG_i2v / optimization.py
IdlecloudX's picture
Upload 4 files
a73378e verified
"""
"""
from typing import Any
from typing import Callable
from typing import ParamSpec
import spaces
import torch
from torch.utils._pytree import tree_map_only
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from torchao.quantization import Int8WeightOnlyConfig
from optimization_utils import capture_component_call
from optimization_utils import aoti_compile
from optimization_utils import drain_module_parameters
P = ParamSpec('P')
# --- 新的、更精确的动态塑形定义 ---
# VAE 时间缩放因子为 1,latent_frames = num_frames。范围是 [8, 81]。
LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81)
# Transformer 的 patch_size 为 (1, 2, 2),这意味着输入潜像的高度和宽度
# 实际上被除以 2。如果符号追踪器假设奇数是可能的,这会产生约束失败。
#
# 为了解决这个问题,我们为 *打过补丁后* (即除法后) 的尺寸定义动态维度,
# 然后将输入形状表示为该维度的 2 倍。这在数学上向编译器保证了
# 输入潜像维度始终为偶数,从而满足约束。
# 应用的像素尺寸范围:[480, 832]。VAE 缩放因子为 8。
# 潜像维度范围:[480/8, 832/8] = [60, 104]。
# 打过补丁后的潜像维度范围:[60/2, 104/2] = [30, 52]。
LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52)
LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52)
# 现在,我们为 transformer 的 `hidden_states` 输入定义动态形状,
# 其形状为 (batch_size, channels, num_frames, height, width)。
TRANSFORMER_DYNAMIC_SHAPES = {
'hidden_states': {
2: LATENT_FRAMES_DIM,
3: 2 * LATENT_PATCHED_HEIGHT_DIM, # 保证高度为偶数
4: 2 * LATENT_PATCHED_WIDTH_DIM, # 保证宽度为偶数
},
}
# --- 定义结束 ---
INDUCTOR_CONFIGS = {
'conv_1x1_as_mm': True,
'epilogue_fusion': False,
'coordinate_descent_tuning': True,
'coordinate_descent_check_all_directions': True,
'max_autotune': True,
'triton.cudagraphs': True,
}
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
@spaces.GPU(duration=1500)
def compile_transformer():
# LoRA 融合部分保持不变
pipeline.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v"
)
kwargs_lora = {}
kwargs_lora["load_into_transformer_2"] = True
pipeline.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v_2", **kwargs_lora
)
pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
pipeline.unload_lora_weights()
# 捕获单次调用以获取 args/kwargs 结构
with capture_component_call(pipeline, 'transformer') as call:
pipeline(*args, **kwargs)
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
# 量化保持不变
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
# --- 简化的编译流程 ---
exported_1 = torch.export.export(
mod=pipeline.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
exported_2 = torch.export.export(
mod=pipeline.transformer_2,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS)
compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS)
# 返回两个已编译的模型
return compiled_1, compiled_2
# 量化文本编码器 (与之前相同)
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
# 获取两个经过动态塑形的已编译模型
compiled_transformer_1, compiled_transformer_2 = compile_transformer()
# --- 简化的赋值流程 ---
pipeline.transformer.forward = compiled_transformer_1
drain_module_parameters(pipeline.transformer)
pipeline.transformer_2.forward = compiled_transformer_2
drain_module_parameters(pipeline.transformer_2)