Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| """ | |
| from typing import Any | |
| from typing import Callable | |
| from typing import ParamSpec | |
| import spaces | |
| import torch | |
| from torch.utils._pytree import tree_map_only | |
| from torchao.quantization import quantize_ | |
| from torchao.quantization import Float8DynamicActivationFloat8WeightConfig | |
| from torchao.quantization import Int8WeightOnlyConfig | |
| from optimization_utils import capture_component_call | |
| from optimization_utils import aoti_compile | |
| from optimization_utils import drain_module_parameters | |
| P = ParamSpec('P') | |
| # --- 新的、更精确的动态塑形定义 --- | |
| # VAE 时间缩放因子为 1,latent_frames = num_frames。范围是 [8, 81]。 | |
| LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81) | |
| # Transformer 的 patch_size 为 (1, 2, 2),这意味着输入潜像的高度和宽度 | |
| # 实际上被除以 2。如果符号追踪器假设奇数是可能的,这会产生约束失败。 | |
| # | |
| # 为了解决这个问题,我们为 *打过补丁后* (即除法后) 的尺寸定义动态维度, | |
| # 然后将输入形状表示为该维度的 2 倍。这在数学上向编译器保证了 | |
| # 输入潜像维度始终为偶数,从而满足约束。 | |
| # 应用的像素尺寸范围:[480, 832]。VAE 缩放因子为 8。 | |
| # 潜像维度范围:[480/8, 832/8] = [60, 104]。 | |
| # 打过补丁后的潜像维度范围:[60/2, 104/2] = [30, 52]。 | |
| LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52) | |
| LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52) | |
| # 现在,我们为 transformer 的 `hidden_states` 输入定义动态形状, | |
| # 其形状为 (batch_size, channels, num_frames, height, width)。 | |
| TRANSFORMER_DYNAMIC_SHAPES = { | |
| 'hidden_states': { | |
| 2: LATENT_FRAMES_DIM, | |
| 3: 2 * LATENT_PATCHED_HEIGHT_DIM, # 保证高度为偶数 | |
| 4: 2 * LATENT_PATCHED_WIDTH_DIM, # 保证宽度为偶数 | |
| }, | |
| } | |
| # --- 定义结束 --- | |
| INDUCTOR_CONFIGS = { | |
| 'conv_1x1_as_mm': True, | |
| 'epilogue_fusion': False, | |
| 'coordinate_descent_tuning': True, | |
| 'coordinate_descent_check_all_directions': True, | |
| 'max_autotune': True, | |
| 'triton.cudagraphs': True, | |
| } | |
| def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): | |
| def compile_transformer(): | |
| # LoRA 融合部分保持不变 | |
| pipeline.load_lora_weights( | |
| "Kijai/WanVideo_comfy", | |
| weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", | |
| adapter_name="lightx2v" | |
| ) | |
| kwargs_lora = {} | |
| kwargs_lora["load_into_transformer_2"] = True | |
| pipeline.load_lora_weights( | |
| "Kijai/WanVideo_comfy", | |
| weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", | |
| adapter_name="lightx2v_2", **kwargs_lora | |
| ) | |
| pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.]) | |
| pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"]) | |
| pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"]) | |
| pipeline.unload_lora_weights() | |
| # 捕获单次调用以获取 args/kwargs 结构 | |
| with capture_component_call(pipeline, 'transformer') as call: | |
| pipeline(*args, **kwargs) | |
| dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs) | |
| dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES | |
| # 量化保持不变 | |
| quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) | |
| quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig()) | |
| # --- 简化的编译流程 --- | |
| exported_1 = torch.export.export( | |
| mod=pipeline.transformer, | |
| args=call.args, | |
| kwargs=call.kwargs, | |
| dynamic_shapes=dynamic_shapes, | |
| ) | |
| exported_2 = torch.export.export( | |
| mod=pipeline.transformer_2, | |
| args=call.args, | |
| kwargs=call.kwargs, | |
| dynamic_shapes=dynamic_shapes, | |
| ) | |
| compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS) | |
| compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS) | |
| # 返回两个已编译的模型 | |
| return compiled_1, compiled_2 | |
| # 量化文本编码器 (与之前相同) | |
| quantize_(pipeline.text_encoder, Int8WeightOnlyConfig()) | |
| # 获取两个经过动态塑形的已编译模型 | |
| compiled_transformer_1, compiled_transformer_2 = compile_transformer() | |
| # --- 简化的赋值流程 --- | |
| pipeline.transformer.forward = compiled_transformer_1 | |
| drain_module_parameters(pipeline.transformer) | |
| pipeline.transformer_2.forward = compiled_transformer_2 | |
| drain_module_parameters(pipeline.transformer_2) |