Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- app.py +301 -0
- optimization.py +132 -0
- optimization_utils.py +107 -0
- requirements.txt +11 -0
app.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PyTorch 2.8 (temporary hack)
|
| 2 |
+
import os
|
| 3 |
+
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
| 4 |
+
|
| 5 |
+
# Actual demo code
|
| 6 |
+
import spaces
|
| 7 |
+
import torch
|
| 8 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 9 |
+
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
| 10 |
+
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 11 |
+
from diffusers.utils.export_utils import export_to_video
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import tempfile
|
| 14 |
+
import numpy as np
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import random
|
| 17 |
+
import gc
|
| 18 |
+
from optimization import optimize_pipeline_
|
| 19 |
+
|
| 20 |
+
SECRET_KEY = os.environ.get("SECRET_KEY")
|
| 21 |
+
|
| 22 |
+
# 如果在 Space 中没有设置密钥
|
| 23 |
+
if not SECRET_KEY:
|
| 24 |
+
raise ValueError("请设置 SECRET_KEY 环境变量。")
|
| 25 |
+
|
| 26 |
+
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
| 27 |
+
|
| 28 |
+
# 在这里配置所有的 LoRA。
|
| 29 |
+
LORA_REPO_ID = "IdlecloudX/Flux_and_Wan_Lora"
|
| 30 |
+
LORA_SETS = {
|
| 31 |
+
"NF": {
|
| 32 |
+
"high_noise": {"file": "NSFW-22-H-e8.safetensors", "adapter_name": "nf_high"},
|
| 33 |
+
"low_noise": {"file": "NSFW-22-L-e8.safetensors", "adapter_name": "nf_low"}
|
| 34 |
+
},
|
| 35 |
+
"BP": {
|
| 36 |
+
"high_noise": {"file": "Wan2.2_BP-v1-HighNoise-I2V_T2V.safetensors", "adapter_name": "bp_high"},
|
| 37 |
+
"low_noise": {"file": "Wan2.2_BP-v1-LowNoise-I2V_T2V.safetensors", "adapter_name": "bp_low"}
|
| 38 |
+
},
|
| 39 |
+
"Py-v1": {
|
| 40 |
+
"high_noise": {"file": "WAN2.2-HighNoise_Pyv1-I2V_T2V.safetensors", "adapter_name": "py_high"},
|
| 41 |
+
"low_noise": {"file": "WAN2.2-LowNoise_Pyv1-I2V_T2V.safetensors", "adapter_name": "py_low"}
|
| 42 |
+
}
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
MAX_DIMENSION = 832
|
| 46 |
+
MIN_DIMENSION = 576
|
| 47 |
+
|
| 48 |
+
DIMENSION_MULTIPLE = 16
|
| 49 |
+
SQUARE_SIZE = 640
|
| 50 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 51 |
+
FIXED_FPS = 16
|
| 52 |
+
MIN_FRAMES_MODEL = 8
|
| 53 |
+
MAX_FRAMES_MODEL = 81
|
| 54 |
+
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS, 1)
|
| 55 |
+
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS, 1)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
print("正在加载模型...")
|
| 59 |
+
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 60 |
+
MODEL_ID,
|
| 61 |
+
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 62 |
+
subfolder='transformer',
|
| 63 |
+
torch_dtype=torch.bfloat16,
|
| 64 |
+
device_map='cuda',
|
| 65 |
+
),
|
| 66 |
+
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 67 |
+
subfolder='transformer_2',
|
| 68 |
+
torch_dtype=torch.bfloat16,
|
| 69 |
+
device_map='cuda',
|
| 70 |
+
),
|
| 71 |
+
torch_dtype=torch.bfloat16,
|
| 72 |
+
)
|
| 73 |
+
# 使用新的调度器
|
| 74 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config, shift=8.0)
|
| 75 |
+
pipe.to('cuda')
|
| 76 |
+
print("模型加载完成。")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
print("开始优化 Pipeline...")
|
| 80 |
+
optimize_pipeline_(pipe,
|
| 81 |
+
image=Image.new('RGB', (MAX_DIMENSION, MIN_DIMENSION)),
|
| 82 |
+
last_image=Image.new('RGB', (MAX_DIMENSION, MIN_DIMENSION)), # 为首尾帧功能添加 last_image
|
| 83 |
+
prompt='prompt',
|
| 84 |
+
height=MIN_DIMENSION,
|
| 85 |
+
width=MAX_DIMENSION,
|
| 86 |
+
num_frames=MAX_FRAMES_MODEL,
|
| 87 |
+
)
|
| 88 |
+
print("优化完成。")
|
| 89 |
+
|
| 90 |
+
for name, lora_set in LORA_SETS.items():
|
| 91 |
+
print(f"--- 开始加载 LoRA 集合: {name} ---")
|
| 92 |
+
|
| 93 |
+
# 加载 High Noise
|
| 94 |
+
high_noise_config = lora_set["high_noise"]
|
| 95 |
+
print(f"正在加载 High Noise: {high_noise_config['file']}...")
|
| 96 |
+
pipe.load_lora_weights(LORA_REPO_ID, weight_name=high_noise_config['file'], adapter_name=high_noise_config['adapter_name'])
|
| 97 |
+
print("High Noise LoRA 加载完成。")
|
| 98 |
+
|
| 99 |
+
# 加载 Low Noise
|
| 100 |
+
low_noise_config = lora_set["low_noise"]
|
| 101 |
+
print(f"正在加载 Low Noise: {low_noise_config['file']}...")
|
| 102 |
+
pipe.load_lora_weights(LORA_REPO_ID, weight_name=low_noise_config['file'], adapter_name=low_noise_config['adapter_name'])
|
| 103 |
+
print("Low Noise LoRA 加载完成。")
|
| 104 |
+
print("所有自定义 LoRA 加载完毕。")
|
| 105 |
+
|
| 106 |
+
for i in range(3):
|
| 107 |
+
gc.collect()
|
| 108 |
+
torch.cuda.synchronize()
|
| 109 |
+
torch.cuda.empty_cache()
|
| 110 |
+
|
| 111 |
+
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
| 112 |
+
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def process_image_for_video(image: Image.Image) -> Image.Image:
|
| 116 |
+
width, height = image.size
|
| 117 |
+
if width == height:
|
| 118 |
+
return image.resize((SQUARE_SIZE, SQUARE_SIZE), Image.Resampling.LANCZOS)
|
| 119 |
+
|
| 120 |
+
aspect_ratio = width / height
|
| 121 |
+
new_width, new_height = width, height
|
| 122 |
+
|
| 123 |
+
if new_width > MAX_DIMENSION or new_height > MAX_DIMENSION:
|
| 124 |
+
scale = MAX_DIMENSION / (new_width if aspect_ratio > 1 else new_height)
|
| 125 |
+
new_width, new_height = new_width * scale, new_height * scale
|
| 126 |
+
|
| 127 |
+
if new_width < MIN_DIMENSION or new_height < MIN_DIMENSION:
|
| 128 |
+
scale = MIN_DIMENSION / (new_height if aspect_ratio > 1 else new_width)
|
| 129 |
+
new_width, new_height = new_width * scale, new_height * scale
|
| 130 |
+
|
| 131 |
+
final_width = int(round(new_width / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
|
| 132 |
+
final_height = int(round(new_height / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
|
| 133 |
+
|
| 134 |
+
final_width = max(final_width, MIN_DIMENSION if aspect_ratio < 1 else SQUARE_SIZE)
|
| 135 |
+
final_height = max(final_height, MIN_DIMENSION if aspect_ratio > 1 else SQUARE_SIZE)
|
| 136 |
+
|
| 137 |
+
return image.resize((final_width, final_height), Image.Resampling.LANCZOS)
|
| 138 |
+
|
| 139 |
+
def resize_and_crop_to_match(target_image, reference_image):
|
| 140 |
+
ref_width, ref_height = reference_image.size
|
| 141 |
+
target_width, target_height = target_image.size
|
| 142 |
+
scale = max(ref_width / target_width, ref_height / target_height)
|
| 143 |
+
new_width, new_height = int(target_width * scale), int(target_height * scale)
|
| 144 |
+
resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 145 |
+
left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2
|
| 146 |
+
return resized.crop((left, top, left + ref_width, top + ref_height))
|
| 147 |
+
|
| 148 |
+
def get_duration(
|
| 149 |
+
secret_key,
|
| 150 |
+
input_image,
|
| 151 |
+
prompt,
|
| 152 |
+
steps,
|
| 153 |
+
negative_prompt,
|
| 154 |
+
duration_seconds,
|
| 155 |
+
guidance_scale,
|
| 156 |
+
guidance_scale_2,
|
| 157 |
+
seed,
|
| 158 |
+
randomize_seed,
|
| 159 |
+
selected_loras,
|
| 160 |
+
progress,
|
| 161 |
+
):
|
| 162 |
+
return int(steps) * 15
|
| 163 |
+
|
| 164 |
+
@spaces.GPU(duration=get_duration)
|
| 165 |
+
def generate_video(
|
| 166 |
+
secret_key,
|
| 167 |
+
start_image_pil,
|
| 168 |
+
end_image_pil,
|
| 169 |
+
prompt,
|
| 170 |
+
steps = 8,
|
| 171 |
+
negative_prompt=default_negative_prompt,
|
| 172 |
+
duration_seconds=3.5,
|
| 173 |
+
guidance_scale=1,
|
| 174 |
+
guidance_scale_2=1,
|
| 175 |
+
seed=42,
|
| 176 |
+
randomize_seed=False,
|
| 177 |
+
selected_loras=[],
|
| 178 |
+
progress=gr.Progress(track_tqdm=True),
|
| 179 |
+
):
|
| 180 |
+
if secret_key != SECRET_KEY:
|
| 181 |
+
raise gr.Error("无效的密钥!请输入正确的密钥。")
|
| 182 |
+
|
| 183 |
+
if start_image_pil is None or end_image_pil is None:
|
| 184 |
+
raise gr.Error("请上传开始帧和结束帧。")
|
| 185 |
+
|
| 186 |
+
progress(0.1, desc="正在预处理图像...")
|
| 187 |
+
processed_start_image = process_image_for_video(start_image_pil)
|
| 188 |
+
processed_end_image = resize_and_crop_to_match(end_image_pil, processed_start_image)
|
| 189 |
+
target_height, target_width = processed_start_image.height, processed_start_image.width
|
| 190 |
+
|
| 191 |
+
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 192 |
+
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
| 193 |
+
num_inference_steps = int(steps)
|
| 194 |
+
switch_step = num_inference_steps // 2
|
| 195 |
+
|
| 196 |
+
progress(0.2, desc=f"正在生成 {num_frames} 帧,尺寸 {target_width}x{target_height} (seed: {current_seed})...")
|
| 197 |
+
|
| 198 |
+
class LoraSwitcher:
|
| 199 |
+
def __init__(self, selected_lora_names):
|
| 200 |
+
self.switched = False
|
| 201 |
+
self.high_noise_adapters = []
|
| 202 |
+
self.low_noise_adapters = []
|
| 203 |
+
if selected_lora_names:
|
| 204 |
+
for name in selected_lora_names:
|
| 205 |
+
if name in LORA_SETS:
|
| 206 |
+
self.high_noise_adapters.append(LORA_SETS[name]["high_noise"]["adapter_name"])
|
| 207 |
+
self.low_noise_adapters.append(LORA_SETS[name]["low_noise"]["adapter_name"])
|
| 208 |
+
|
| 209 |
+
def __call__(self, pipe, step_index, timestep, callback_kwargs):
|
| 210 |
+
if step_index == 0:
|
| 211 |
+
self.switched = False
|
| 212 |
+
if self.high_noise_adapters:
|
| 213 |
+
print(f"激活 High Noise LoRA: {self.high_noise_adapters}")
|
| 214 |
+
pipe.set_adapters(self.high_noise_adapters, adapter_weights=[1.0] * len(self.high_noise_adapters))
|
| 215 |
+
elif pipe.get_active_adapters():
|
| 216 |
+
active_adapters = pipe.get_active_adapters()
|
| 217 |
+
print(f"未选择 LoRA,通过设置权重为0来禁用残留的 LoRA: {active_adapters}")
|
| 218 |
+
pipe.set_adapters(active_adapters, adapter_weights=[0.0] * len(active_adapters))
|
| 219 |
+
|
| 220 |
+
if self.low_noise_adapters and step_index >= switch_step and not self.switched:
|
| 221 |
+
print(f"在第 {step_index} 步切换到 Low Noise LoRA: {self.low_noise_adapters}")
|
| 222 |
+
pipe.set_adapters(self.low_noise_adapters, adapter_weights=[1.0] * len(self.low_noise_adapters))
|
| 223 |
+
self.switched = True
|
| 224 |
+
return callback_kwargs
|
| 225 |
+
|
| 226 |
+
lora_switcher_callback = LoraSwitcher(selected_loras)
|
| 227 |
+
|
| 228 |
+
output_frames_list = pipe(
|
| 229 |
+
image=processed_start_image,
|
| 230 |
+
last_image=processed_end_image,
|
| 231 |
+
prompt=prompt,
|
| 232 |
+
negative_prompt=negative_prompt,
|
| 233 |
+
height=target_height,
|
| 234 |
+
width=target_width,
|
| 235 |
+
num_frames=num_frames,
|
| 236 |
+
guidance_scale=float(guidance_scale),
|
| 237 |
+
guidance_scale_2=float(guidance_scale_2),
|
| 238 |
+
num_inference_steps=num_inference_steps,
|
| 239 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
| 240 |
+
callback_on_step_end=lora_switcher_callback,
|
| 241 |
+
).frames[0]
|
| 242 |
+
|
| 243 |
+
progress(0.9, desc="正在编码和保存视频...")
|
| 244 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 245 |
+
video_path = tmpfile.name
|
| 246 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 247 |
+
|
| 248 |
+
progress(1.0, desc="完成!")
|
| 249 |
+
return video_path, current_seed
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
with gr.Blocks() as demo:
|
| 253 |
+
gr.Markdown("# Wan 2.2 First/Last Frame with Custom LoRA")
|
| 254 |
+
with gr.Row():
|
| 255 |
+
with gr.Column():
|
| 256 |
+
secret_key_input = gr.Textbox(label="密钥 (Secret Key)", placeholder="Enter your key here...", type="password")
|
| 257 |
+
|
| 258 |
+
with gr.Row():
|
| 259 |
+
start_image_component = gr.Image(type="pil", label="开始帧 (Start Frame)", sources=["upload", "clipboard"])
|
| 260 |
+
end_image_component = gr.Image(type="pil", label="结束帧 (End Frame)", sources=["upload", "clipboard"])
|
| 261 |
+
|
| 262 |
+
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
|
| 263 |
+
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="视频时长 (秒)", info=f"将在 {FIXED_FPS}fps 下被限制在模型的 {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} 帧范围内。")
|
| 264 |
+
|
| 265 |
+
# 保留您的 LoRA 选择器
|
| 266 |
+
lora_selection_checkbox = gr.CheckboxGroup(
|
| 267 |
+
choices=list(LORA_SETS.keys()),
|
| 268 |
+
label="选择要应用的 LoRA (可多选)",
|
| 269 |
+
info="选择一个或多个 LoRA 风格进行组合。"
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
with gr.Accordion("高级设置", open=False):
|
| 273 |
+
negative_prompt_input = gr.Textbox(label="负面提示词", value=default_negative_prompt, lines=3)
|
| 274 |
+
seed_input = gr.Slider(label="种子", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
| 275 |
+
randomize_seed_checkbox = gr.Checkbox(label="随机种子", value=True, interactive=True)
|
| 276 |
+
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=8, label="推理步数")
|
| 277 |
+
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="引导系数 - 高噪声阶段")
|
| 278 |
+
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="引导系数 2 - 低噪声阶段")
|
| 279 |
+
|
| 280 |
+
generate_button = gr.Button("生成视频", variant="primary")
|
| 281 |
+
with gr.Column():
|
| 282 |
+
video_output = gr.Video(label="生成的视频", autoplay=True, interactive=False)
|
| 283 |
+
|
| 284 |
+
ui_inputs = [
|
| 285 |
+
secret_key_input,
|
| 286 |
+
start_image_component,
|
| 287 |
+
end_image_component,
|
| 288 |
+
prompt_input,
|
| 289 |
+
steps_slider,
|
| 290 |
+
negative_prompt_input,
|
| 291 |
+
duration_seconds_input,
|
| 292 |
+
guidance_scale_input,
|
| 293 |
+
guidance_scale_2_input,
|
| 294 |
+
seed_input,
|
| 295 |
+
randomize_seed_checkbox,
|
| 296 |
+
lora_selection_checkbox
|
| 297 |
+
]
|
| 298 |
+
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
| 299 |
+
|
| 300 |
+
if __name__ == "__main__":
|
| 301 |
+
demo.queue().launch(mcp_server=True)
|
optimization.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
"""
|
| 3 |
+
|
| 4 |
+
from typing import Any
|
| 5 |
+
from typing import Callable
|
| 6 |
+
from typing import ParamSpec
|
| 7 |
+
|
| 8 |
+
import spaces
|
| 9 |
+
import torch
|
| 10 |
+
from torch.utils._pytree import tree_map_only
|
| 11 |
+
from torchao.quantization import quantize_
|
| 12 |
+
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
| 13 |
+
from torchao.quantization import Int8WeightOnlyConfig
|
| 14 |
+
|
| 15 |
+
from optimization_utils import capture_component_call
|
| 16 |
+
from optimization_utils import aoti_compile
|
| 17 |
+
from optimization_utils import drain_module_parameters
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
P = ParamSpec('P')
|
| 21 |
+
|
| 22 |
+
# --- 新的、更精确的动态塑形定义 ---
|
| 23 |
+
|
| 24 |
+
# VAE 时间缩放因子为 1,latent_frames = num_frames。范围是 [8, 81]。
|
| 25 |
+
LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81)
|
| 26 |
+
|
| 27 |
+
# Transformer 的 patch_size 为 (1, 2, 2),这意味着输入潜像的高度和宽度
|
| 28 |
+
# 实际上被除以 2。如果符号追踪器假设奇数是可能的,这会产生约束失败。
|
| 29 |
+
#
|
| 30 |
+
# 为了解决这个问题,我们为 *打过补丁后* (即除法后) 的尺寸定义动态维度,
|
| 31 |
+
# 然后将输入形状表示为该维度的 2 倍。这在数学上向编译器保证了
|
| 32 |
+
# 输入潜像维度始终为偶数,从而满足约束。
|
| 33 |
+
|
| 34 |
+
# 应用的像素尺寸范围:[480, 832]。VAE 缩放因子为 8。
|
| 35 |
+
# 潜像维度范围:[480/8, 832/8] = [60, 104]。
|
| 36 |
+
# 打过补丁后的潜像维度范围:[60/2, 104/2] = [30, 52]。
|
| 37 |
+
LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52)
|
| 38 |
+
LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52)
|
| 39 |
+
|
| 40 |
+
# 现在,我们为 transformer 的 `hidden_states` 输入定义动态形状,
|
| 41 |
+
# 其形状为 (batch_size, channels, num_frames, height, width)。
|
| 42 |
+
TRANSFORMER_DYNAMIC_SHAPES = {
|
| 43 |
+
'hidden_states': {
|
| 44 |
+
2: LATENT_FRAMES_DIM,
|
| 45 |
+
3: 2 * LATENT_PATCHED_HEIGHT_DIM, # 保证高度为偶数
|
| 46 |
+
4: 2 * LATENT_PATCHED_WIDTH_DIM, # 保证宽度为偶数
|
| 47 |
+
},
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
# --- 定义结束 ---
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
INDUCTOR_CONFIGS = {
|
| 54 |
+
'conv_1x1_as_mm': True,
|
| 55 |
+
'epilogue_fusion': False,
|
| 56 |
+
'coordinate_descent_tuning': True,
|
| 57 |
+
'coordinate_descent_check_all_directions': True,
|
| 58 |
+
'max_autotune': True,
|
| 59 |
+
'triton.cudagraphs': True,
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
| 64 |
+
|
| 65 |
+
@spaces.GPU(duration=1500)
|
| 66 |
+
def compile_transformer():
|
| 67 |
+
|
| 68 |
+
# LoRA 融合部分保持不变
|
| 69 |
+
pipeline.load_lora_weights(
|
| 70 |
+
"Kijai/WanVideo_comfy",
|
| 71 |
+
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 72 |
+
adapter_name="lightx2v"
|
| 73 |
+
)
|
| 74 |
+
kwargs_lora = {}
|
| 75 |
+
kwargs_lora["load_into_transformer_2"] = True
|
| 76 |
+
pipeline.load_lora_weights(
|
| 77 |
+
"Kijai/WanVideo_comfy",
|
| 78 |
+
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 79 |
+
adapter_name="lightx2v_2", **kwargs_lora
|
| 80 |
+
)
|
| 81 |
+
pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
|
| 82 |
+
pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
|
| 83 |
+
pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
|
| 84 |
+
pipeline.unload_lora_weights()
|
| 85 |
+
|
| 86 |
+
# 捕获单次调用以获取 args/kwargs 结构
|
| 87 |
+
with capture_component_call(pipeline, 'transformer') as call:
|
| 88 |
+
pipeline(*args, **kwargs)
|
| 89 |
+
|
| 90 |
+
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
|
| 91 |
+
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
|
| 92 |
+
|
| 93 |
+
# 量化保持不变
|
| 94 |
+
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
| 95 |
+
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
| 96 |
+
|
| 97 |
+
# --- 简化的编译流程 ---
|
| 98 |
+
|
| 99 |
+
exported_1 = torch.export.export(
|
| 100 |
+
mod=pipeline.transformer,
|
| 101 |
+
args=call.args,
|
| 102 |
+
kwargs=call.kwargs,
|
| 103 |
+
dynamic_shapes=dynamic_shapes,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
exported_2 = torch.export.export(
|
| 107 |
+
mod=pipeline.transformer_2,
|
| 108 |
+
args=call.args,
|
| 109 |
+
kwargs=call.kwargs,
|
| 110 |
+
dynamic_shapes=dynamic_shapes,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS)
|
| 114 |
+
compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS)
|
| 115 |
+
|
| 116 |
+
# 返回两个已编译的模型
|
| 117 |
+
return compiled_1, compiled_2
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# 量化文本编码器 (与之前相同)
|
| 121 |
+
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
| 122 |
+
|
| 123 |
+
# 获取两个经过动态塑形的已编译模型
|
| 124 |
+
compiled_transformer_1, compiled_transformer_2 = compile_transformer()
|
| 125 |
+
|
| 126 |
+
# --- 简化的赋值流程 ---
|
| 127 |
+
|
| 128 |
+
pipeline.transformer.forward = compiled_transformer_1
|
| 129 |
+
drain_module_parameters(pipeline.transformer)
|
| 130 |
+
|
| 131 |
+
pipeline.transformer_2.forward = compiled_transformer_2
|
| 132 |
+
drain_module_parameters(pipeline.transformer_2)
|
optimization_utils.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
"""
|
| 3 |
+
import contextlib
|
| 4 |
+
from contextvars import ContextVar
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from typing import Any
|
| 7 |
+
from typing import cast
|
| 8 |
+
from unittest.mock import patch
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch._inductor.package.package import package_aoti
|
| 12 |
+
from torch.export.pt2_archive._package import AOTICompiledModel
|
| 13 |
+
from torch.export.pt2_archive._package_weights import Weights
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
INDUCTOR_CONFIGS_OVERRIDES = {
|
| 17 |
+
'aot_inductor.package_constants_in_so': False,
|
| 18 |
+
'aot_inductor.package_constants_on_disk': True,
|
| 19 |
+
'aot_inductor.package': True,
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class ZeroGPUWeights:
|
| 24 |
+
def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False):
|
| 25 |
+
if to_cuda:
|
| 26 |
+
self.constants_map = {name: tensor.to('cuda') for name, tensor in constants_map.items()}
|
| 27 |
+
else:
|
| 28 |
+
self.constants_map = constants_map
|
| 29 |
+
def __reduce__(self):
|
| 30 |
+
constants_map: dict[str, torch.Tensor] = {}
|
| 31 |
+
for name, tensor in self.constants_map.items():
|
| 32 |
+
tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
|
| 33 |
+
constants_map[name] = tensor_.copy_(tensor).detach().share_memory_()
|
| 34 |
+
return ZeroGPUWeights, (constants_map, True)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class ZeroGPUCompiledModel:
|
| 38 |
+
def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights):
|
| 39 |
+
self.archive_file = archive_file
|
| 40 |
+
self.weights = weights
|
| 41 |
+
self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
|
| 42 |
+
def __call__(self, *args, **kwargs):
|
| 43 |
+
if (compiled_model := self.compiled_model.get()) is None:
|
| 44 |
+
compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
|
| 45 |
+
compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True)
|
| 46 |
+
self.compiled_model.set(compiled_model)
|
| 47 |
+
return compiled_model(*args, **kwargs)
|
| 48 |
+
def __reduce__(self):
|
| 49 |
+
return ZeroGPUCompiledModel, (self.archive_file, self.weights)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def aoti_compile(
|
| 53 |
+
exported_program: torch.export.ExportedProgram,
|
| 54 |
+
inductor_configs: dict[str, Any] | None = None,
|
| 55 |
+
):
|
| 56 |
+
inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
|
| 57 |
+
gm = cast(torch.fx.GraphModule, exported_program.module())
|
| 58 |
+
assert exported_program.example_inputs is not None
|
| 59 |
+
args, kwargs = exported_program.example_inputs
|
| 60 |
+
artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
|
| 61 |
+
archive_file = BytesIO()
|
| 62 |
+
files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
|
| 63 |
+
package_aoti(archive_file, files)
|
| 64 |
+
weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
|
| 65 |
+
zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights})
|
| 66 |
+
return ZeroGPUCompiledModel(archive_file, zerogpu_weights)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@contextlib.contextmanager
|
| 70 |
+
def capture_component_call(
|
| 71 |
+
pipeline: Any,
|
| 72 |
+
component_name: str,
|
| 73 |
+
component_method='forward',
|
| 74 |
+
):
|
| 75 |
+
|
| 76 |
+
class CapturedCallException(Exception):
|
| 77 |
+
def __init__(self, *args, **kwargs):
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.args = args
|
| 80 |
+
self.kwargs = kwargs
|
| 81 |
+
|
| 82 |
+
class CapturedCall:
|
| 83 |
+
def __init__(self):
|
| 84 |
+
self.args: tuple[Any, ...] = ()
|
| 85 |
+
self.kwargs: dict[str, Any] = {}
|
| 86 |
+
|
| 87 |
+
component = getattr(pipeline, component_name)
|
| 88 |
+
captured_call = CapturedCall()
|
| 89 |
+
|
| 90 |
+
def capture_call(*args, **kwargs):
|
| 91 |
+
raise CapturedCallException(*args, **kwargs)
|
| 92 |
+
|
| 93 |
+
with patch.object(component, component_method, new=capture_call):
|
| 94 |
+
try:
|
| 95 |
+
yield captured_call
|
| 96 |
+
except CapturedCallException as e:
|
| 97 |
+
captured_call.args = e.args
|
| 98 |
+
captured_call.kwargs = e.kwargs
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def drain_module_parameters(module: torch.nn.Module):
|
| 102 |
+
state_dict_meta = {name: {'device': tensor.device, 'dtype': tensor.dtype} for name, tensor in module.state_dict().items()}
|
| 103 |
+
state_dict = {name: torch.nn.Parameter(torch.empty_like(tensor, device='cpu')) for name, tensor in module.state_dict().items()}
|
| 104 |
+
module.load_state_dict(state_dict, assign=True)
|
| 105 |
+
for name, param in state_dict.items():
|
| 106 |
+
meta = state_dict_meta[name]
|
| 107 |
+
param.data = torch.Tensor([]).to(**meta)
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/linoytsaban/diffusers.git@wan22-loras
|
| 2 |
+
|
| 3 |
+
transformers
|
| 4 |
+
accelerate
|
| 5 |
+
safetensors
|
| 6 |
+
sentencepiece
|
| 7 |
+
peft
|
| 8 |
+
ftfy
|
| 9 |
+
imageio-ffmpeg
|
| 10 |
+
opencv-python
|
| 11 |
+
torchao==0.11.0
|