SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/xlm-roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("slimaneMakh/triplet_CloseHlabel_farLabel_andnegativ-1M-5eps-XLMR_29may")
# Run inference
sentences = [
'Sales',
'Revenue',
'Operating profit',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9988 |
| dot_accuracy | 0.0015 |
| manhattan_accuracy | 0.9975 |
| euclidean_accuracy | 0.9991 |
| max_accuracy | 0.9991 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 660,643 training samples
- Columns:
anchor_label,pos_hlabel, andneg_hlabel - Approximate statistics based on the first 1000 samples:
anchor_label pos_hlabel neg_hlabel type string string string details - min: 3 tokens
- mean: 11.86 tokens
- max: 39 tokens
- min: 3 tokens
- mean: 9.06 tokens
- max: 32 tokens
- min: 3 tokens
- mean: 7.99 tokens
- max: 25 tokens
- Samples:
anchor_label pos_hlabel neg_hlabel Basic earnings (loss) per shareTavakasum kahjum aktsia kohtaII Kapital z nadwyzki wartosci emisyjnej ponad wartosc nominalnaComprehensive incomeSuma dochodow calkowitychdont MarquesCash and cash equivalentsCash and cash equivalentsCars incl prepayments - Loss:
TripletLosswith these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 283,133 evaluation samples
- Columns:
anchor_label,pos_hlabel, andneg_hlabel - Approximate statistics based on the first 1000 samples:
anchor_label pos_hlabel neg_hlabel type string string string details - min: 3 tokens
- mean: 11.78 tokens
- max: 37 tokens
- min: 3 tokens
- mean: 9.22 tokens
- max: 39 tokens
- min: 3 tokens
- mean: 8.12 tokens
- max: 29 tokens
- Samples:
anchor_label pos_hlabel neg_hlabel Deferred tax assetsDeferred tax assetsImmateriella tillgangarEquityEGET KAPITAL inklusive periodens resultatMaterialsAdjustments for decrease (increase) in other operating receivablesOkning av ovriga rorelsetillgangarRorelseresultat - Loss:
TripletLosswith these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falsefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | max_accuracy |
|---|---|---|---|---|
| 0.0121 | 500 | 3.7705 | - | - |
| 0.0242 | 1000 | 1.4084 | - | - |
| 0.0363 | 1500 | 0.7062 | - | - |
| 0.0484 | 2000 | 0.5236 | - | - |
| 0.0605 | 2500 | 0.4348 | - | - |
| 0.0727 | 3000 | 0.3657 | - | - |
| 0.0848 | 3500 | 0.3657 | - | - |
| 0.0969 | 4000 | 0.2952 | - | - |
| 0.1090 | 4500 | 0.3805 | - | - |
| 0.1211 | 5000 | 0.3255 | - | - |
| 0.1332 | 5500 | 0.2621 | - | - |
| 0.1453 | 6000 | 0.2377 | - | - |
| 0.1574 | 6500 | 0.2139 | - | - |
| 0.1695 | 7000 | 0.2085 | - | - |
| 0.1816 | 7500 | 0.1809 | - | - |
| 0.1937 | 8000 | 0.1711 | - | - |
| 0.2059 | 8500 | 0.1608 | - | - |
| 0.2180 | 9000 | 0.1808 | - | - |
| 0.2301 | 9500 | 0.1553 | - | - |
| 0.2422 | 10000 | 0.1417 | - | - |
| 0.2543 | 10500 | 0.1329 | - | - |
| 0.2664 | 11000 | 0.1689 | - | - |
| 0.2785 | 11500 | 0.1292 | - | - |
| 0.2906 | 12000 | 0.1181 | - | - |
| 0.3027 | 12500 | 0.1223 | - | - |
| 0.3148 | 13000 | 0.129 | - | - |
| 0.3269 | 13500 | 0.0911 | - | - |
| 0.3391 | 14000 | 0.113 | - | - |
| 0.3512 | 14500 | 0.0955 | - | - |
| 0.3633 | 15000 | 0.108 | - | - |
| 0.3754 | 15500 | 0.094 | - | - |
| 0.3875 | 16000 | 0.0947 | - | - |
| 0.3996 | 16500 | 0.0748 | - | - |
| 0.4117 | 17000 | 0.0699 | - | - |
| 0.4238 | 17500 | 0.0707 | - | - |
| 0.4359 | 18000 | 0.0768 | - | - |
| 0.4480 | 18500 | 0.0805 | - | - |
| 0.4601 | 19000 | 0.0705 | - | - |
| 0.4723 | 19500 | 0.069 | - | - |
| 0.4844 | 20000 | 0.072 | - | - |
| 0.4965 | 20500 | 0.0669 | - | - |
| 0.5086 | 21000 | 0.066 | - | - |
| 0.5207 | 21500 | 0.0624 | - | - |
| 0.5328 | 22000 | 0.0687 | - | - |
| 0.5449 | 22500 | 0.076 | - | - |
| 0.5570 | 23000 | 0.0563 | - | - |
| 0.5691 | 23500 | 0.0594 | - | - |
| 0.5812 | 24000 | 0.0524 | - | - |
| 0.5933 | 24500 | 0.0528 | - | - |
| 0.6055 | 25000 | 0.0448 | - | - |
| 0.6176 | 25500 | 0.041 | - | - |
| 0.6297 | 26000 | 0.0397 | - | - |
| 0.6418 | 26500 | 0.0489 | - | - |
| 0.6539 | 27000 | 0.0595 | - | - |
| 0.6660 | 27500 | 0.034 | - | - |
| 0.6781 | 28000 | 0.0569 | - | - |
| 0.6902 | 28500 | 0.0467 | - | - |
| 0.7023 | 29000 | 0.0323 | - | - |
| 0.7144 | 29500 | 0.0428 | - | - |
| 0.7266 | 30000 | 0.0344 | - | - |
| 0.7387 | 30500 | 0.029 | - | - |
| 0.7508 | 31000 | 0.0418 | - | - |
| 0.7629 | 31500 | 0.0285 | - | - |
| 0.7750 | 32000 | 0.0425 | - | - |
| 0.7871 | 32500 | 0.0266 | - | - |
| 0.7992 | 33000 | 0.0325 | - | - |
| 0.8113 | 33500 | 0.0215 | - | - |
| 0.8234 | 34000 | 0.0316 | - | - |
| 0.8355 | 34500 | 0.0286 | - | - |
| 0.8476 | 35000 | 0.0285 | - | - |
| 0.8598 | 35500 | 0.0284 | - | - |
| 0.8719 | 36000 | 0.0147 | - | - |
| 0.8840 | 36500 | 0.0217 | - | - |
| 0.8961 | 37000 | 0.0311 | - | - |
| 0.9082 | 37500 | 0.0202 | - | - |
| 0.9203 | 38000 | 0.0236 | - | - |
| 0.9324 | 38500 | 0.0201 | - | - |
| 0.9445 | 39000 | 0.0246 | - | - |
| 0.9566 | 39500 | 0.0177 | - | - |
| 0.9687 | 40000 | 0.0173 | - | - |
| 0.9808 | 40500 | 0.0202 | - | - |
| 0.9930 | 41000 | 0.017 | - | - |
| 1.0 | 41291 | - | 0.0140 | 0.9991 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.0
- Transformers: 4.39.3
- PyTorch: 2.1.2
- Accelerate: 0.28.0
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- -
Model tree for slimaneMakh/triplet_CloseHlabel_farLabel_andnegativ-1M-5eps-XLMR_29may
Base model
FacebookAI/xlm-roberta-baseEvaluation results
- Cosine Accuracy on Unknownself-reported0.999
- Dot Accuracy on Unknownself-reported0.002
- Manhattan Accuracy on Unknownself-reported0.998
- Euclidean Accuracy on Unknownself-reported0.999
- Max Accuracy on Unknownself-reported0.999