Text Classification
Transformers
PyTorch
English
bert
File size: 3,576 Bytes
0f80450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
  - en
---

# Model Card for `passage-ranker.chocolate`

This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results.

Model name: `passage-ranker.chocolate`

## Supported Languages

The model was trained and tested in the following languages:

- English

## Scores

| Metric              | Value |
|:--------------------|------:|
| Relevance (NDCG@10) | 0.484 |

Note that the relevance score is computed as an average over 14 retrieval datasets (see
[details below](#evaluation-metrics)).

## Inference Times

| GPU                                       | Quantization type |  Batch size 1  |  Batch size 32 |
|:------------------------------------------|:------------------|---------------:|---------------:|
| NVIDIA A10                                | FP16              |           1 ms |           5 ms |
| NVIDIA A10                                | FP32              |           2 ms |          22 ms |
| NVIDIA T4                                 | FP16              |           1 ms |          13 ms |
| NVIDIA T4                                 | FP32              |           3 ms |          66 ms |
| NVIDIA L4                                 | FP16              |           2 ms |           6 ms |
| NVIDIA L4                                 | FP32              |           3 ms |          30 ms |

## Gpu Memory usage

| Quantization type                                |   Memory   |
|:-------------------------------------------------|-----------:|
| FP16                                             |    300 MiB |
| FP32                                             |    550 MiB |

Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
can be around 0.5 to 1 GiB depending on the used GPU.

## Requirements

- Minimal Sinequa version: 11.10.0
- [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)

## Model Details

### Overview

- Number of parameters: 23 million
- Base language model: [MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased)
  ([Paper](https://arxiv.org/abs/2002.10957), [GitHub](https://github.com/microsoft/unilm/tree/master/minilm))
- Insensitive to casing and accents
- Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)

### Training Data

- MS MARCO Passage Ranking
  ([Paper](https://arxiv.org/abs/1611.09268),
  [Official Page](https://microsoft.github.io/msmarco/),
  [dataset on HF hub](https://huggingface.co/datasets/unicamp-dl/mmarco))

### Evaluation Metrics

To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
[BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.

| Dataset           | NDCG@10 |
|:------------------|--------:|
| Average           |   0.486 |
|                   |         |
| Arguana           |   0.554 |
| CLIMATE-FEVER     |   0.209 |
| DBPedia Entity    |   0.367 |
| FEVER             |   0.744 |
| FiQA-2018         |   0.339 |
| HotpotQA          |   0.685 |
| MS MARCO          |   0.412 |
| NFCorpus          |   0.352 |
| NQ                |   0.454 |
| Quora             |   0.818 |
| SCIDOCS           |   0.158 |
| SciFact           |   0.658 |
| TREC-COVID        |   0.674 |
| Webis-Touche-2020 |   0.345 |