Text Classification
Transformers
PyTorch
English
bert
loic-dagnas-sinequa commited on
Commit
0f80450
·
verified ·
1 Parent(s): a0e5812

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -94
README.md CHANGED
@@ -1,94 +1,93 @@
1
- ---
2
- language:
3
- - en
4
- ---
5
-
6
- # Model Card for `passage-ranker.chocolate`
7
-
8
- This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results.
9
-
10
- Model name: `passage-ranker.chocolate`
11
-
12
- ## Supported Languages
13
-
14
- The model was trained and tested in the following languages:
15
-
16
- - English
17
-
18
- ## Scores
19
-
20
- | Metric | Value |
21
- |:--------------------|------:|
22
- | Relevance (NDCG@10) | 0.484 |
23
-
24
- Note that the relevance score is computed as an average over 14 retrieval datasets (see
25
- [details below](#evaluation-metrics)).
26
-
27
- ## Inference Times
28
-
29
- | GPU | Quantization type | Batch size 1 | Batch size 32 |
30
- |:------------------------------------------|:------------------|---------------:|---------------:|
31
- | NVIDIA A10 | FP16 | 1 ms | 5 ms |
32
- | NVIDIA A10 | FP32 | 2 ms | 22 ms |
33
- | NVIDIA T4 | FP16 | 1 ms | 13 ms |
34
- | NVIDIA T4 | FP32 | 3 ms | 66 ms |
35
- | NVIDIA L4 | FP16 | 2 ms | 6 ms |
36
- | NVIDIA L4 | FP32 | 3 ms | 30 ms |
37
-
38
- ## Gpu Memory usage
39
-
40
- | Quantization type | Memory |
41
- |:-------------------------------------------------|-----------:|
42
- | FP16 | 300 MiB |
43
- | FP32 | 550 MiB |
44
-
45
- Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
46
- size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
47
- can be around 0.5 to 1 GiB depending on the used GPU.
48
-
49
- ## Requirements
50
-
51
- - Minimal Sinequa version: 11.10.0
52
- - Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
53
- - [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)
54
-
55
- ## Model Details
56
-
57
- ### Overview
58
-
59
- - Number of parameters: 23 million
60
- - Base language model: [MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased)
61
- ([Paper](https://arxiv.org/abs/2002.10957), [GitHub](https://github.com/microsoft/unilm/tree/master/minilm))
62
- - Insensitive to casing and accents
63
- - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
64
-
65
- ### Training Data
66
-
67
- - MS MARCO Passage Ranking
68
- ([Paper](https://arxiv.org/abs/1611.09268),
69
- [Official Page](https://microsoft.github.io/msmarco/),
70
- [dataset on HF hub](https://huggingface.co/datasets/unicamp-dl/mmarco))
71
-
72
- ### Evaluation Metrics
73
-
74
- To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
75
- [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
76
-
77
- | Dataset | NDCG@10 |
78
- |:------------------|--------:|
79
- | Average | 0.486 |
80
- | | |
81
- | Arguana | 0.554 |
82
- | CLIMATE-FEVER | 0.209 |
83
- | DBPedia Entity | 0.367 |
84
- | FEVER | 0.744 |
85
- | FiQA-2018 | 0.339 |
86
- | HotpotQA | 0.685 |
87
- | MS MARCO | 0.412 |
88
- | NFCorpus | 0.352 |
89
- | NQ | 0.454 |
90
- | Quora | 0.818 |
91
- | SCIDOCS | 0.158 |
92
- | SciFact | 0.658 |
93
- | TREC-COVID | 0.674 |
94
- | Webis-Touche-2020 | 0.345 |
 
1
+ ---
2
+ language:
3
+ - en
4
+ ---
5
+
6
+ # Model Card for `passage-ranker.chocolate`
7
+
8
+ This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results.
9
+
10
+ Model name: `passage-ranker.chocolate`
11
+
12
+ ## Supported Languages
13
+
14
+ The model was trained and tested in the following languages:
15
+
16
+ - English
17
+
18
+ ## Scores
19
+
20
+ | Metric | Value |
21
+ |:--------------------|------:|
22
+ | Relevance (NDCG@10) | 0.484 |
23
+
24
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
25
+ [details below](#evaluation-metrics)).
26
+
27
+ ## Inference Times
28
+
29
+ | GPU | Quantization type | Batch size 1 | Batch size 32 |
30
+ |:------------------------------------------|:------------------|---------------:|---------------:|
31
+ | NVIDIA A10 | FP16 | 1 ms | 5 ms |
32
+ | NVIDIA A10 | FP32 | 2 ms | 22 ms |
33
+ | NVIDIA T4 | FP16 | 1 ms | 13 ms |
34
+ | NVIDIA T4 | FP32 | 3 ms | 66 ms |
35
+ | NVIDIA L4 | FP16 | 2 ms | 6 ms |
36
+ | NVIDIA L4 | FP32 | 3 ms | 30 ms |
37
+
38
+ ## Gpu Memory usage
39
+
40
+ | Quantization type | Memory |
41
+ |:-------------------------------------------------|-----------:|
42
+ | FP16 | 300 MiB |
43
+ | FP32 | 550 MiB |
44
+
45
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
46
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
47
+ can be around 0.5 to 1 GiB depending on the used GPU.
48
+
49
+ ## Requirements
50
+
51
+ - Minimal Sinequa version: 11.10.0
52
+ - [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)
53
+
54
+ ## Model Details
55
+
56
+ ### Overview
57
+
58
+ - Number of parameters: 23 million
59
+ - Base language model: [MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased)
60
+ ([Paper](https://arxiv.org/abs/2002.10957), [GitHub](https://github.com/microsoft/unilm/tree/master/minilm))
61
+ - Insensitive to casing and accents
62
+ - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
63
+
64
+ ### Training Data
65
+
66
+ - MS MARCO Passage Ranking
67
+ ([Paper](https://arxiv.org/abs/1611.09268),
68
+ [Official Page](https://microsoft.github.io/msmarco/),
69
+ [dataset on HF hub](https://huggingface.co/datasets/unicamp-dl/mmarco))
70
+
71
+ ### Evaluation Metrics
72
+
73
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
74
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
75
+
76
+ | Dataset | NDCG@10 |
77
+ |:------------------|--------:|
78
+ | Average | 0.486 |
79
+ | | |
80
+ | Arguana | 0.554 |
81
+ | CLIMATE-FEVER | 0.209 |
82
+ | DBPedia Entity | 0.367 |
83
+ | FEVER | 0.744 |
84
+ | FiQA-2018 | 0.339 |
85
+ | HotpotQA | 0.685 |
86
+ | MS MARCO | 0.412 |
87
+ | NFCorpus | 0.352 |
88
+ | NQ | 0.454 |
89
+ | Quora | 0.818 |
90
+ | SCIDOCS | 0.158 |
91
+ | SciFact | 0.658 |
92
+ | TREC-COVID | 0.674 |
93
+ | Webis-Touche-2020 | 0.345 |