senga-nt-asr-inferred-force-aligned-speecht5-MAT-to-ACT

This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 300.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.572 13.5153 1000 0.5450
0.5346 27.0271 2000 0.5272
0.5276 40.5424 3000 0.5311
0.5074 54.0542 4000 0.5191
0.5025 67.5695 5000 0.5194
0.4816 81.0814 6000 0.5211
0.4842 94.5966 7000 0.5199
0.4743 108.1085 8000 0.5154
0.4681 121.6237 9000 0.5141
0.4709 135.1356 10000 0.5234
0.452 148.6508 11000 0.5161
0.4488 162.1627 12000 0.5170
0.4445 175.6780 13000 0.5159
0.4511 189.1898 14000 0.5148
0.4412 202.7051 15000 0.5147
0.4388 216.2169 16000 0.5155
0.4336 229.7322 17000 0.5161
0.4447 243.2441 18000 0.5126
0.4362 256.7593 19000 0.5163
0.4184 270.2712 20000 0.5149
0.4544 283.7864 21000 0.5156
0.4261 297.2983 22000 0.5144

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.2.0
  • Tokenizers 0.22.1
Downloads last month
336
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for sil-ai/senga-nt-asr-inferred-force-aligned-speecht5-MAT-to-ACT

Finetuned
(1264)
this model