senga-nt-asr-inferred-force-aligned-speecht5-MAT-to-ACT
This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5144
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 300.0
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.572 | 13.5153 | 1000 | 0.5450 |
| 0.5346 | 27.0271 | 2000 | 0.5272 |
| 0.5276 | 40.5424 | 3000 | 0.5311 |
| 0.5074 | 54.0542 | 4000 | 0.5191 |
| 0.5025 | 67.5695 | 5000 | 0.5194 |
| 0.4816 | 81.0814 | 6000 | 0.5211 |
| 0.4842 | 94.5966 | 7000 | 0.5199 |
| 0.4743 | 108.1085 | 8000 | 0.5154 |
| 0.4681 | 121.6237 | 9000 | 0.5141 |
| 0.4709 | 135.1356 | 10000 | 0.5234 |
| 0.452 | 148.6508 | 11000 | 0.5161 |
| 0.4488 | 162.1627 | 12000 | 0.5170 |
| 0.4445 | 175.6780 | 13000 | 0.5159 |
| 0.4511 | 189.1898 | 14000 | 0.5148 |
| 0.4412 | 202.7051 | 15000 | 0.5147 |
| 0.4388 | 216.2169 | 16000 | 0.5155 |
| 0.4336 | 229.7322 | 17000 | 0.5161 |
| 0.4447 | 243.2441 | 18000 | 0.5126 |
| 0.4362 | 256.7593 | 19000 | 0.5163 |
| 0.4184 | 270.2712 | 20000 | 0.5149 |
| 0.4544 | 283.7864 | 21000 | 0.5156 |
| 0.4261 | 297.2983 | 22000 | 0.5144 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 336
Model tree for sil-ai/senga-nt-asr-inferred-force-aligned-speecht5-MAT-to-ACT
Base model
microsoft/speecht5_tts