senga-nt-asr-inferred-force-aligned-speecht5-LUK-ACT

This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5318

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 300.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.5415 29.4148 1000 0.5518
0.4976 58.8296 2000 0.5369
0.4763 88.2370 3000 0.5323
0.4762 117.6519 4000 0.5341
0.4607 147.0593 5000 0.5326
0.4497 176.4741 6000 0.5361
0.4489 205.8889 7000 0.5325
0.4346 235.2963 8000 0.5331
0.4373 264.7111 9000 0.5312
0.4393 294.1185 10000 0.5318

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.2.0
  • Tokenizers 0.22.1
Downloads last month
332
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for sil-ai/senga-nt-asr-inferred-force-aligned-speecht5-LUK-ACT

Finetuned
(1265)
this model