senga-nt-asr-inferred-force-aligned-speecht5-LUK-ACT
This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5318
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 300.0
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.5415 | 29.4148 | 1000 | 0.5518 |
| 0.4976 | 58.8296 | 2000 | 0.5369 |
| 0.4763 | 88.2370 | 3000 | 0.5323 |
| 0.4762 | 117.6519 | 4000 | 0.5341 |
| 0.4607 | 147.0593 | 5000 | 0.5326 |
| 0.4497 | 176.4741 | 6000 | 0.5361 |
| 0.4489 | 205.8889 | 7000 | 0.5325 |
| 0.4346 | 235.2963 | 8000 | 0.5331 |
| 0.4373 | 264.7111 | 9000 | 0.5312 |
| 0.4393 | 294.1185 | 10000 | 0.5318 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 332
Model tree for sil-ai/senga-nt-asr-inferred-force-aligned-speecht5-LUK-ACT
Base model
microsoft/speecht5_tts