Indonesian Medical Text Simplifier
This model is fine-tuned from indobenchmark/indot5-small for the task of medical text simplification in the Indonesian language.
How to Use
from transformers import T5ForConditionalGeneration, T5Tokenizer
model_name = "shanndrea/indot5-small-penyederhanaan-teks-medis"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
def simplify(text):
prompt = "sederhanakan: " + text
inputs = tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True)
outputs = model.generate(
inputs.input_ids,
max_length=128,
num_beams=5,
early_stopping=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Example usage
complex_text = "Pasien mengeluhkan mialgia setelah melakukan aktivitas fisik yang berlebihan."
simplified_text = simplify(complex_text)
print(f"Complex Sentence: {complex_text}")
print(f"Simplified Sentence: {simplified_text}")
- Downloads last month
- 27
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support