indobert-finetuned

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2758
  • Accuracy: 0.9349
  • F1: 0.9339

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.1907 1.0 344 0.1820 0.9317 0.9309
0.1104 2.0 688 0.1717 0.9444 0.9443
0.0762 3.0 1032 0.2062 0.9397 0.9397
0.0416 4.0 1376 0.2758 0.9349 0.9339

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
69
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for savioruz/indobert-finetuned

Finetuned
(103)
this model