ritesh-07's picture
Add new SentenceTransformer model
44f8867 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:5822
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
  - source_sentence: |-
      (confidentiality), 4-5.4 (professional independence of the lawyer), 
      and 4-5.5 (unauthorized practice of law). When retaining or 
      directing a nonlawyer outside the firm, a lawyer should 
      communicate directions appropriate under the circumstances to 
      give reasonable assurance that the nonlawyer’s conduct is 
      compatible with the professional obligations of the lawyer.
    sentences:
      - ¿Qué concluyó el TPI acerca del contrato entre las partes?
      - What rule number addresses the unauthorized practice of law?
      - >-
        What document did the plaintiff allegedly send to the defendant on April
        6, 2023?
  - source_sentence: >-
      Except as provided in paragraphs (b) and (d), the appeal must be perfected
      within 30 

      days from the entry of the interlocutory order by filing a notice of
      appeal ***. *** 
       
      (b) Motion to Vacate. If an interlocutory order is entered on ex parte
      application, 

      the party intending to take an appeal therefrom shall first present, on
      notice, a motion
    sentences:
      - ¿Cuál es el número del documento judicial mencionado en el extracto?
      - >-
        What is a requirement for a party intending to appeal an ex parte
        interlocutory order?
      - >-
        What does the Alliant II GWAC for IT services require the agency to
        evaluate?
  - source_sentence: >-
      who would then mail the video directly to the police. Id.  

      Finally, in Reyes v. State, 257 Md. App. 596 (2023), the Appellate Court
      of 

      Maryland held that a video taken by a man’s residential security camera
      was properly 

      authenticated when he testified to the camera’s “general reliability” and
      other pertinent
    sentences:
      - Under which rule does the appellant assert jurisdiction?
      - >-
        What did the man testify to regarding the security camera in Reyes v.
        State?
      - >-
        What conclusion cannot be made by the Court about the CIA's search
        methods?
  - source_sentence: >-
      1 (alleging refusals to provide estimated dates of completion on October
      18, October 24, and 

      November 3, 2012). 

      The Court concludes that this proposed amended must be denied for undue
      delay.  See, 

      e.g., Firestone, 76 F.3d at 1208.  As alleged in the plaintiff’s First
      Amended Complaint, the 

      plaintiff first became aware of the alleged Non-Provision of Completion
      Date Policy in
    sentences:
      - What was the court's reason for denying the proposed amendment?
      - >-
        How does the court intend to address the issues regarding the CIA’s
        Exemption 3 withholding decisions?
      - Who submitted the first declaration?
  - source_sentence: >-
      Either way, the protégé firm’s project is subject to evaluation by the
      agency, and that project is 

      assessed against the same evaluation criteria used to evaluate projects
      submitted by offerors 

      generally.  As Plaintiffs’ counsel aptly stated during Oral Argument, the
      Solicitations’ terms offer 

      “a distinction without a difference.”  Oral Arg. Tr. at 28:23–24.
    sentences:
      - What does the court reject?
      - What is subject to evaluation by the agency?
      - Where is the reference to the Appellate Court's opinion found?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: ModernBERT Embed base Legal Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.5517774343122102
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5996908809891809
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6908809891808346
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7557959814528593
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5517774343122102
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.5188047398248326
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.39907264296754247
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.23384853168469857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.19951056156620295
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5135239567233385
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6388459556929418
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7458784131890778
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6552384058092013
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.598969603297269
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6390584877806069
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.5332302936630603
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5734157650695518
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6615146831530139
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7465224111282844
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5332302936630603
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.4992272024729521
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.38454404945904175
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.2312210200927357
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.1907521895929933
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.49149922720247297
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6137300360638845
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7350592478104071
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6383508606262611
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5797569981109392
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6198878359190206
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.5162287480680062
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5486862442040186
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6306027820710973
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7017001545595054
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5162287480680062
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.4811952601751674
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.3675425038639877
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.21808346213292115
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.18353941267387944
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4712776919113859
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5861669242658424
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6899793920659454
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6056043667170141
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5548097446088168
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5942340636200647
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.42967542503863987
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4605873261205564
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5564142194744977
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6568778979907264
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.42967542503863987
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.40649149922720246
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.32210200927357036
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.2017001545595054
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.1491499227202473
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.393353941267388
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5097887686759403
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.634853168469861
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5347242820771732
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4756550379038785
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5205948927868919
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.31530139103554866
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.34930448222565685
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.41731066460587324
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5131375579598145
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.31530139103554866
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3008758371973209
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.23956723338485317
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.157032457496136
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11269963936115403
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.29520865533230295
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3794435857805255
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4929160226687274
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.40740874237250463
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.35583462132921173
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.39964199682487694
            name: Cosine Map@100

ModernBERT Embed base Legal Matryoshka

This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/modernbert-embed-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ritesh-07/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
    'Either way, the protégé firm’s project is subject to evaluation by the agency, and that project is \nassessed against the same evaluation criteria used to evaluate projects submitted by offerors \ngenerally.  As Plaintiffs’ counsel aptly stated during Oral Argument, the Solicitations’ terms offer \n“a distinction without a difference.”  Oral Arg. Tr. at 28:23–24.',
    'What is subject to evaluation by the agency?',
    'What does the court reject?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5518
cosine_accuracy@3 0.5997
cosine_accuracy@5 0.6909
cosine_accuracy@10 0.7558
cosine_precision@1 0.5518
cosine_precision@3 0.5188
cosine_precision@5 0.3991
cosine_precision@10 0.2338
cosine_recall@1 0.1995
cosine_recall@3 0.5135
cosine_recall@5 0.6388
cosine_recall@10 0.7459
cosine_ndcg@10 0.6552
cosine_mrr@10 0.599
cosine_map@100 0.6391

Information Retrieval

Metric Value
cosine_accuracy@1 0.5332
cosine_accuracy@3 0.5734
cosine_accuracy@5 0.6615
cosine_accuracy@10 0.7465
cosine_precision@1 0.5332
cosine_precision@3 0.4992
cosine_precision@5 0.3845
cosine_precision@10 0.2312
cosine_recall@1 0.1908
cosine_recall@3 0.4915
cosine_recall@5 0.6137
cosine_recall@10 0.7351
cosine_ndcg@10 0.6384
cosine_mrr@10 0.5798
cosine_map@100 0.6199

Information Retrieval

Metric Value
cosine_accuracy@1 0.5162
cosine_accuracy@3 0.5487
cosine_accuracy@5 0.6306
cosine_accuracy@10 0.7017
cosine_precision@1 0.5162
cosine_precision@3 0.4812
cosine_precision@5 0.3675
cosine_precision@10 0.2181
cosine_recall@1 0.1835
cosine_recall@3 0.4713
cosine_recall@5 0.5862
cosine_recall@10 0.69
cosine_ndcg@10 0.6056
cosine_mrr@10 0.5548
cosine_map@100 0.5942

Information Retrieval

Metric Value
cosine_accuracy@1 0.4297
cosine_accuracy@3 0.4606
cosine_accuracy@5 0.5564
cosine_accuracy@10 0.6569
cosine_precision@1 0.4297
cosine_precision@3 0.4065
cosine_precision@5 0.3221
cosine_precision@10 0.2017
cosine_recall@1 0.1491
cosine_recall@3 0.3934
cosine_recall@5 0.5098
cosine_recall@10 0.6349
cosine_ndcg@10 0.5347
cosine_mrr@10 0.4757
cosine_map@100 0.5206

Information Retrieval

Metric Value
cosine_accuracy@1 0.3153
cosine_accuracy@3 0.3493
cosine_accuracy@5 0.4173
cosine_accuracy@10 0.5131
cosine_precision@1 0.3153
cosine_precision@3 0.3009
cosine_precision@5 0.2396
cosine_precision@10 0.157
cosine_recall@1 0.1127
cosine_recall@3 0.2952
cosine_recall@5 0.3794
cosine_recall@10 0.4929
cosine_ndcg@10 0.4074
cosine_mrr@10 0.3558
cosine_map@100 0.3996

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 5,822 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 26 tokens
    • mean: 97.05 tokens
    • max: 160 tokens
    • min: 8 tokens
    • mean: 16.68 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    Martinez v. State. We explained that, in United States v. Vayner, 769 F.3d 125 (2d Cir.
    2014), the Second Circuit had determined that Federal Rule of Evidence 901 “is satisfied
    if sufficient proof has been introduced so that a reasonable juror could find in favor of
    authenticity or identification.” Sublet, 442 Md. at 666, 113 A.3d at 715 (quoting Vayner,
    What Federal Rule of Evidence did the Second Circuit interpret in United States v. Vayner?
    was not a party, but which contained similar allegations to her complaint here.4 The seven-
    paragraph “Argument” section of defendant’s motion was divided equally between the two
    grounds, with the first paragraph quoting the statute, and the next three paragraphs arguing the
    first ground, and the following three paragraphs arguing the second ground. With respect to
    How is the 'Argument' section of the defendant's motion divided?
    20 El derecho aplicable en el caso de epígrafe se remite al Código Civil de Puerto
    Rico de 1930, puesto que, la presentación de la Demanda y los hechos que dan
    base a esta tuvieron su lugar antes de la aprobación del nuevo Código Civil de
    Puerto Rico, Ley 55-2020, según enmendado.



    KLAN202300916

    14
    cumplimiento de los contratos, y no debemos relevar a una parte del
    ¿Cuál es el número del documento judicial mencionado en el extracto?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.8791 10 5.6072 - - - - -
1.0 12 - 0.5880 0.5784 0.5408 0.4667 0.3408
1.7033 20 2.5041 - - - - -
2.0 24 - 0.6403 0.6249 0.5903 0.5162 0.3884
2.5275 30 1.8714 - - - - -
3.0 36 - 0.6550 0.6347 0.6034 0.5320 0.4023
3.3516 40 1.524 - - - - -
4.0 48 - 0.6552 0.6384 0.6056 0.5347 0.4074
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.53.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 4.0.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}