FastVLM: Efficient Vision Encoding for Vision Language Models
FastVLM was introduced in FastVLM: Efficient Vision Encoding for Vision Language Models. (CVPR 2025)
Highlights
- We introduce FastViTHD, a novel hybrid vision encoder designed to output fewer tokens and significantly reduce encoding time for high-resolution images.
 - Our smallest variant outperforms LLaVA-OneVision-0.5B with 85x faster Time-to-First-Token (TTFT) and 3.4x smaller vision encoder.
 - Our larger variants using Qwen2-7B LLM outperform recent works like Cambrian-1-8B while using a single image encoder with a 7.9x faster TTFT.
 
Evaluations
| Benchmark | FastVLM-0.5B | FastVLM-1.5B | FastVLM-7B | 
|---|---|---|---|
| Ai2D | 68.0 | 77.4 | 83.6 | 
| ScienceQA | 85.2 | 94.4 | 96.7 | 
| MMMU | 33.9 | 37.8 | 45.4 | 
| VQAv2 | 76.3 | 79.1 | 80.8 | 
| ChartQA | 76.0 | 80.1 | 85.0 | 
| TextVQA | 64.5 | 70.4 | 74.9 | 
| InfoVQA | 46.4 | 59.7 | 75.8 | 
| DocVQA | 82.5 | 88.3 | 93.2 | 
| OCRBench | 63.9 | 70.2 | 73.1 | 
| RealWorldQA | 56.1 | 61.2 | 67.2 | 
| SeedBench-Img | 71.0 | 74.2 | 75.4 | 
Usage Example
To run inference of PyTorch checkpoint, follow the instruction in the official repo:
Download the model
huggingface-cli download apple/FastVLM-0.5B
Run inference using predict.py from the official repo.
python predict.py --model-path /path/to/checkpoint-dir \
                  --image-file /path/to/image.png \
                  --prompt "Describe the image."
Citation
If you found this model useful, please cite the following paper:
@InProceedings{fastvlm2025,
  author = {Pavan Kumar Anasosalu Vasu, Fartash Faghri, Chun-Liang Li, Cem Koc, Nate True, Albert Antony, Gokul Santhanam, James Gabriel, Peter Grasch, Oncel Tuzel, Hadi Pouransari},
  title = {FastVLM: Efficient Vision Encoding for Vision Language Models},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2025},
}
- Downloads last month
 - 13