whisper-base-hac / README.md
razhan's picture
End of training
5725a17 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - razhan/DOLMA-speech
metrics:
  - wer
model-index:
  - name: whisper-base-hac
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: razhan/DOLMA-speech hawrami
          type: razhan/DOLMA-speech
          args: hawrami
        metrics:
          - name: Wer
            type: wer
            value: 0.47917770477906113

whisper-base-hac

This model is a fine-tuned version of openai/whisper-base on the razhan/DOLMA-speech hawrami dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3272
  • Wer: 0.4792
  • Cer: 0.1039

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 192
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 384
  • total_eval_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.9468 1.0 27 0.9999 0.9633 0.3797
0.6132 2.0 54 0.4681 0.6078 0.1469
0.3976 3.0 81 0.3668 0.5161 0.1128
0.3485 4.0 108 0.3360 0.4889 0.1065
0.3292 5.0 135 0.3272 0.4792 0.1039

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0