sentiment-XLNnet-2025_II

This model is a fine-tuned version of xlnet/xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5971
  • F1 Macro: 0.7693
  • F1 Weighted: 0.7732
  • Accuracy: 0.7721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Weighted Accuracy
0.7148 1.0 164 0.6885 0.3818 0.3498 0.4558
0.6764 2.0 328 0.6087 0.6659 0.6695 0.6677
0.6066 3.0 492 0.5459 0.7364 0.7459 0.7515
0.4872 4.0 656 0.5602 0.7572 0.7650 0.7683
0.386 5.0 820 0.5875 0.7701 0.7768 0.7790
0.2853 6.0 984 0.6121 0.7798 0.7841 0.7835
0.2407 7.0 1148 0.9999 0.7620 0.7690 0.7713
0.1793 8.0 1312 1.1289 0.7721 0.7786 0.7805
0.1414 9.0 1476 1.2392 0.7615 0.7660 0.7652

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
14
Safetensors
Model size
0.4B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for raulgdp/sentiment-XLNnet-2025_II

Finetuned
(36)
this model