EasyOCR / README.md
qaihm-bot's picture
v0.37.0
e052c2b verified
|
raw
history blame
18.4 kB
metadata
library_name: pytorch
license: other
tags:
  - android
pipeline_tag: image-to-text

EasyOCR: Optimized for Mobile Deployment

Ready-to-use OCR with 80+ supported languages and all popular writing scripts

EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts.

This model is an implementation of EasyOCR found here.

This repository provides scripts to run EasyOCR on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_to_text
  • Model Stats:
    • Model checkpoint: easyocr-small-stage1
    • Input resolution: 384x384
    • Number of parameters (EasyOCRDetector): 20.8M
    • Model size (EasyOCRDetector) (float): 79.2 MB
    • Number of parameters (EasyOCRRecognizer): 3.84M
    • Model size (EasyOCRRecognizer) (float): 14.7 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
EasyOCRDetector float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 275.495 ms 16 - 51 MB NPU EasyOCR.tflite
EasyOCRDetector float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 271.438 ms 0 - 37 MB NPU EasyOCR.dlc
EasyOCRDetector float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 69.519 ms 16 - 65 MB NPU EasyOCR.tflite
EasyOCRDetector float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 78.539 ms 6 - 53 MB NPU EasyOCR.dlc
EasyOCRDetector float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 43.688 ms 9 - 133 MB NPU EasyOCR.tflite
EasyOCRDetector float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 39.511 ms 6 - 19 MB NPU EasyOCR.dlc
EasyOCRDetector float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 39.726 ms 1 - 99 MB NPU EasyOCR.onnx.zip
EasyOCRDetector float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 71.785 ms 16 - 50 MB NPU EasyOCR.tflite
EasyOCRDetector float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 68.865 ms 2 - 38 MB NPU EasyOCR.dlc
EasyOCRDetector float SA7255P ADP Qualcomm® SA7255P TFLITE 275.495 ms 16 - 51 MB NPU EasyOCR.tflite
EasyOCRDetector float SA7255P ADP Qualcomm® SA7255P QNN_DLC 271.438 ms 0 - 37 MB NPU EasyOCR.dlc
EasyOCRDetector float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 41.37 ms 6 - 142 MB NPU EasyOCR.tflite
EasyOCRDetector float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 38.682 ms 6 - 18 MB NPU EasyOCR.dlc
EasyOCRDetector float SA8295P ADP Qualcomm® SA8295P TFLITE 78.437 ms 16 - 55 MB NPU EasyOCR.tflite
EasyOCRDetector float SA8295P ADP Qualcomm® SA8295P QNN_DLC 75.743 ms 3 - 44 MB NPU EasyOCR.dlc
EasyOCRDetector float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 40.829 ms 10 - 152 MB NPU EasyOCR.tflite
EasyOCRDetector float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 38.835 ms 6 - 18 MB NPU EasyOCR.dlc
EasyOCRDetector float SA8775P ADP Qualcomm® SA8775P TFLITE 71.785 ms 16 - 50 MB NPU EasyOCR.tflite
EasyOCRDetector float SA8775P ADP Qualcomm® SA8775P QNN_DLC 68.865 ms 2 - 38 MB NPU EasyOCR.dlc
EasyOCRDetector float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 40.739 ms 10 - 147 MB NPU EasyOCR.tflite
EasyOCRDetector float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 38.418 ms 6 - 24 MB NPU EasyOCR.dlc
EasyOCRDetector float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 40.036 ms 37 - 52 MB NPU EasyOCR.onnx.zip
EasyOCRDetector float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 29.891 ms 16 - 61 MB NPU EasyOCR.tflite
EasyOCRDetector float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 29.54 ms 21 - 62 MB NPU EasyOCR.dlc
EasyOCRDetector float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 29.435 ms 15 - 45 MB NPU EasyOCR.onnx.zip
EasyOCRDetector float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 29.197 ms 14 - 53 MB NPU EasyOCR.tflite
EasyOCRDetector float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 27.58 ms 6 - 45 MB NPU EasyOCR.dlc
EasyOCRDetector float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 24.663 ms 19 - 57 MB NPU EasyOCR.onnx.zip
EasyOCRDetector float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 38.971 ms 6 - 6 MB NPU EasyOCR.dlc
EasyOCRDetector float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 39.303 ms 66 - 66 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 486.11 ms 8 - 18 MB CPU EasyOCR.tflite
EasyOCRRecognizer float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 79.645 ms 0 - 263 MB NPU EasyOCR.dlc
EasyOCRRecognizer float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 131.131 ms 9 - 32 MB CPU EasyOCR.tflite
EasyOCRRecognizer float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 38.043 ms 0 - 198 MB NPU EasyOCR.dlc
EasyOCRRecognizer float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 108.948 ms 3 - 6 MB CPU EasyOCR.tflite
EasyOCRRecognizer float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 34.476 ms 0 - 46 MB NPU EasyOCR.dlc
EasyOCRRecognizer float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 21.923 ms 2 - 12 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 362.642 ms 11 - 21 MB CPU EasyOCR.tflite
EasyOCRRecognizer float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 36.848 ms 0 - 261 MB NPU EasyOCR.dlc
EasyOCRRecognizer float SA7255P ADP Qualcomm® SA7255P TFLITE 486.11 ms 8 - 18 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA7255P ADP Qualcomm® SA7255P QNN_DLC 79.645 ms 0 - 263 MB NPU EasyOCR.dlc
EasyOCRRecognizer float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 100.494 ms 7 - 12 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 34.335 ms 0 - 50 MB NPU EasyOCR.dlc
EasyOCRRecognizer float SA8295P ADP Qualcomm® SA8295P TFLITE 204.627 ms 8 - 27 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA8295P ADP Qualcomm® SA8295P QNN_DLC 40.528 ms 0 - 193 MB NPU EasyOCR.dlc
EasyOCRRecognizer float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 105.598 ms 7 - 10 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 34.54 ms 0 - 52 MB NPU EasyOCR.dlc
EasyOCRRecognizer float SA8775P ADP Qualcomm® SA8775P TFLITE 362.642 ms 11 - 21 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA8775P ADP Qualcomm® SA8775P QNN_DLC 36.848 ms 0 - 261 MB NPU EasyOCR.dlc
EasyOCRRecognizer float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 116.682 ms 8 - 11 MB CPU EasyOCR.tflite
EasyOCRRecognizer float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 34.375 ms 0 - 50 MB NPU EasyOCR.dlc
EasyOCRRecognizer float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 21.241 ms 2 - 11 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 97.535 ms 9 - 28 MB CPU EasyOCR.tflite
EasyOCRRecognizer float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 25.789 ms 0 - 264 MB NPU EasyOCR.dlc
EasyOCRRecognizer float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 15.977 ms 4 - 30 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 107.038 ms 14 - 30 MB CPU EasyOCR.tflite
EasyOCRRecognizer float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 25.601 ms 0 - 273 MB NPU EasyOCR.dlc
EasyOCRRecognizer float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 17.275 ms 4 - 20 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 35.598 ms 82 - 82 MB NPU EasyOCR.dlc
EasyOCRRecognizer float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 18.246 ms 0 - 0 MB NPU EasyOCR.onnx.zip

Installation

Install the package via pip:

pip install "qai-hub-models[easyocr]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.easyocr.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.easyocr.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.easyocr.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.easyocr import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on EasyOCR's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of EasyOCR can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community