EasyOCR / README.md
qaihm-bot's picture
Upload README.md with huggingface_hub
7333566 verified
|
raw
history blame
17 kB
metadata
library_name: pytorch
license: apache-2.0
tags:
  - android
pipeline_tag: image-to-text

EasyOCR: Optimized for Mobile Deployment

Ready-to-use OCR with 80+ supported languages and all popular writing scripts

EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts.

This model is an implementation of EasyOCR found here.

This repository provides scripts to run EasyOCR on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Image to text
  • Model Stats:
    • Model checkpoint: easyocr-small-stage1
    • Input resolution: 384x384
    • Number of parameters (EasyOCRDetector): 20.8M
    • Model size (EasyOCRDetector): 79.2 MB
    • Number of parameters (EasyOCRRecognizer): 3.84M
    • Model size (EasyOCRRecognizer): 14.7 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
EasyOCRDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 41.91 ms 10 - 141 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 38.543 ms 6 - 8 MB FP16 NPU EasyOCR.so
EasyOCRDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 39.323 ms 19 - 110 MB FP16 NPU EasyOCR.onnx
EasyOCRDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 30.086 ms 16 - 69 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 28.126 ms 6 - 24 MB FP16 NPU EasyOCR.so
EasyOCRDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 28.858 ms 35 - 72 MB FP16 NPU EasyOCR.onnx
EasyOCRDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 29.475 ms 14 - 47 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 29.547 ms 6 - 33 MB FP16 NPU Use Export Script
EasyOCRDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 24.527 ms 39 - 74 MB FP16 NPU EasyOCR.onnx
EasyOCRDetector SA7255P ADP SA7255P TFLITE 2114.004 ms 15 - 44 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA7255P ADP SA7255P QNN 2109.728 ms 2 - 11 MB FP16 NPU Use Export Script
EasyOCRDetector SA8255 (Proxy) SA8255P Proxy TFLITE 41.396 ms 11 - 147 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA8255 (Proxy) SA8255P Proxy QNN 39.444 ms 6 - 9 MB FP16 NPU Use Export Script
EasyOCRDetector SA8295P ADP SA8295P TFLITE 78.432 ms 16 - 49 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA8295P ADP SA8295P QNN 75.075 ms 0 - 17 MB FP16 NPU Use Export Script
EasyOCRDetector SA8650 (Proxy) SA8650P Proxy TFLITE 41.574 ms 12 - 148 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA8650 (Proxy) SA8650P Proxy QNN 38.407 ms 6 - 8 MB FP16 NPU Use Export Script
EasyOCRDetector SA8775P ADP SA8775P TFLITE 88.559 ms 16 - 45 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA8775P ADP SA8775P QNN 84.944 ms 1 - 11 MB FP16 NPU Use Export Script
EasyOCRDetector QCS8275 (Proxy) QCS8275 Proxy TFLITE 2114.004 ms 15 - 44 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector QCS8275 (Proxy) QCS8275 Proxy QNN 2109.728 ms 2 - 11 MB FP16 NPU Use Export Script
EasyOCRDetector QCS8550 (Proxy) QCS8550 Proxy TFLITE 40.574 ms 7 - 140 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector QCS8550 (Proxy) QCS8550 Proxy QNN 38.257 ms 6 - 9 MB FP16 NPU Use Export Script
EasyOCRDetector QCS9075 (Proxy) QCS9075 Proxy TFLITE 88.559 ms 16 - 45 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector QCS9075 (Proxy) QCS9075 Proxy QNN 84.944 ms 1 - 11 MB FP16 NPU Use Export Script
EasyOCRDetector QCS8450 (Proxy) QCS8450 Proxy TFLITE 76.952 ms 16 - 72 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector QCS8450 (Proxy) QCS8450 Proxy QNN 71.123 ms 6 - 36 MB FP16 NPU Use Export Script
EasyOCRDetector Snapdragon X Elite CRD Snapdragon® X Elite QNN 38.701 ms 6 - 6 MB FP16 NPU Use Export Script
EasyOCRDetector Snapdragon X Elite CRD Snapdragon® X Elite ONNX 40.36 ms 66 - 66 MB FP16 NPU EasyOCR.onnx
EasyOCRRecognizer Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 127.76 ms 2 - 4 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 23.315 ms 0 - 11 MB FP16 NPU EasyOCR.so
EasyOCRRecognizer Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 21.538 ms 0 - 23 MB FP16 NPU EasyOCR.onnx
EasyOCRRecognizer Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 112.41 ms 9 - 29 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 16.967 ms 0 - 19 MB FP16 NPU EasyOCR.so
EasyOCRRecognizer Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 15.089 ms 0 - 21 MB FP16 NPU EasyOCR.onnx
EasyOCRRecognizer Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 103.434 ms 20 - 35 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 18.591 ms 0 - 427 MB FP16 NPU Use Export Script
EasyOCRRecognizer Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 14.033 ms 0 - 16 MB FP16 NPU EasyOCR.onnx
EasyOCRRecognizer SA7255P ADP SA7255P TFLITE 558.999 ms 8 - 17 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA7255P ADP SA7255P QNN 281.972 ms 0 - 9 MB FP16 NPU Use Export Script
EasyOCRRecognizer SA8255 (Proxy) SA8255P Proxy TFLITE 112.26 ms 6 - 9 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA8255 (Proxy) SA8255P Proxy QNN 23.271 ms 0 - 3 MB FP16 NPU Use Export Script
EasyOCRRecognizer SA8295P ADP SA8295P TFLITE 212.269 ms 11 - 29 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA8295P ADP SA8295P QNN 39.146 ms 0 - 18 MB FP16 NPU Use Export Script
EasyOCRRecognizer SA8650 (Proxy) SA8650P Proxy TFLITE 115.66 ms 8 - 10 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA8650 (Proxy) SA8650P Proxy QNN 23.236 ms 0 - 2 MB FP16 NPU Use Export Script
EasyOCRRecognizer SA8775P ADP SA8775P TFLITE 408.093 ms 8 - 18 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA8775P ADP SA8775P QNN 31.5 ms 0 - 10 MB FP16 NPU Use Export Script
EasyOCRRecognizer QCS8275 (Proxy) QCS8275 Proxy TFLITE 558.999 ms 8 - 17 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer QCS8275 (Proxy) QCS8275 Proxy QNN 281.972 ms 0 - 9 MB FP16 NPU Use Export Script
EasyOCRRecognizer QCS8550 (Proxy) QCS8550 Proxy TFLITE 123.177 ms 8 - 10 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer QCS8550 (Proxy) QCS8550 Proxy QNN 23.274 ms 0 - 3 MB FP16 NPU Use Export Script
EasyOCRRecognizer QCS9075 (Proxy) QCS9075 Proxy TFLITE 408.093 ms 8 - 18 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer QCS9075 (Proxy) QCS9075 Proxy QNN 31.5 ms 0 - 10 MB FP16 NPU Use Export Script
EasyOCRRecognizer QCS8450 (Proxy) QCS8450 Proxy TFLITE 130.512 ms 6 - 24 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer QCS8450 (Proxy) QCS8450 Proxy QNN 36.541 ms 0 - 169 MB FP16 NPU Use Export Script
EasyOCRRecognizer Snapdragon X Elite CRD Snapdragon® X Elite QNN 24.492 ms 0 - 0 MB FP16 NPU Use Export Script
EasyOCRRecognizer Snapdragon X Elite CRD Snapdragon® X Elite ONNX 18.355 ms 0 - 0 MB FP16 NPU EasyOCR.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[easyocr]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.easyocr.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.easyocr.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.easyocr.export
Profiling Results
------------------------------------------------------------
EasyOCRDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 41.9                   
Estimated peak memory usage (MB): [10, 141]              
Total # Ops                     : 42                     
Compute Unit(s)                 : NPU (42 ops)           

------------------------------------------------------------
EasyOCRRecognizer
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 127.8                  
Estimated peak memory usage (MB): [2, 4]                 
Total # Ops                     : 136                    
Compute Unit(s)                 : CPU (136 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.easyocr import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on EasyOCR's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of EasyOCR can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community