EasyOCR / README.md
qaihm-bot's picture
v0.39.0
656a31a verified
|
raw
history blame
16.6 kB
metadata
library_name: pytorch
license: other
tags:
  - android
pipeline_tag: image-to-text

EasyOCR: Optimized for Mobile Deployment

Ready-to-use OCR with 80+ supported languages and all popular writing scripts

EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts.

This model is an implementation of EasyOCR found here.

This repository provides scripts to run EasyOCR on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_to_text
  • Model Stats:
    • Model checkpoint: easyocr-small-stage1
    • Input resolution: 608x800
    • Number of parameters (EasyOCRDetector): 20.8M
    • Model size (EasyOCRDetector) (float): 79.2 MB
    • Number of parameters (EasyOCRRecognizer): 3.84M
    • Model size (EasyOCRRecognizer) (float): 14.7 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
EasyOCRDetector float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 272.521 ms 1 - 38 MB NPU EasyOCR.tflite
EasyOCRDetector float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 66.695 ms 1 - 47 MB NPU EasyOCR.tflite
EasyOCRDetector float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 80.417 ms 6 - 56 MB NPU EasyOCR.dlc
EasyOCRDetector float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 38.318 ms 0 - 154 MB NPU EasyOCR.tflite
EasyOCRDetector float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 39.369 ms 6 - 23 MB NPU EasyOCR.dlc
EasyOCRDetector float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 37.689 ms 0 - 52 MB NPU EasyOCR.onnx.zip
EasyOCRDetector float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 70.007 ms 13 - 49 MB NPU EasyOCR.tflite
EasyOCRDetector float SA7255P ADP Qualcomm® SA7255P TFLITE 272.521 ms 1 - 38 MB NPU EasyOCR.tflite
EasyOCRDetector float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 38.198 ms 1 - 154 MB NPU EasyOCR.tflite
EasyOCRDetector float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 39.829 ms 6 - 20 MB NPU EasyOCR.dlc
EasyOCRDetector float SA8295P ADP Qualcomm® SA8295P TFLITE 76.771 ms 1 - 40 MB NPU EasyOCR.tflite
EasyOCRDetector float SA8295P ADP Qualcomm® SA8295P QNN_DLC 77.272 ms 6 - 53 MB NPU EasyOCR.dlc
EasyOCRDetector float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 39.149 ms 0 - 145 MB NPU EasyOCR.tflite
EasyOCRDetector float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 39.436 ms 6 - 22 MB NPU EasyOCR.dlc
EasyOCRDetector float SA8775P ADP Qualcomm® SA8775P TFLITE 70.007 ms 13 - 49 MB NPU EasyOCR.tflite
EasyOCRDetector float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 28.195 ms 1 - 45 MB NPU EasyOCR.tflite
EasyOCRDetector float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 28.584 ms 6 - 46 MB NPU EasyOCR.dlc
EasyOCRDetector float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 27.276 ms 6 - 48 MB NPU EasyOCR.onnx.zip
EasyOCRDetector float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 22.79 ms 1 - 42 MB NPU EasyOCR.tflite
EasyOCRDetector float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 22.779 ms 6 - 44 MB NPU EasyOCR.dlc
EasyOCRDetector float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 22.343 ms 4 - 44 MB NPU EasyOCR.onnx.zip
EasyOCRDetector float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 17.02 ms 1 - 42 MB NPU EasyOCR.tflite
EasyOCRDetector float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 17.664 ms 7 - 49 MB NPU EasyOCR.onnx.zip
EasyOCRDetector float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 40.778 ms 34 - 34 MB NPU EasyOCR.dlc
EasyOCRDetector float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 38.495 ms 35 - 35 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 479.613 ms 8 - 18 MB CPU EasyOCR.tflite
EasyOCRRecognizer float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 113.782 ms 9 - 30 MB CPU EasyOCR.tflite
EasyOCRRecognizer float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 38.101 ms 0 - 196 MB NPU EasyOCR.dlc
EasyOCRRecognizer float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 104.991 ms 8 - 11 MB CPU EasyOCR.tflite
EasyOCRRecognizer float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 24.676 ms 0 - 103 MB NPU EasyOCR.dlc
EasyOCRRecognizer float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 35.392 ms 0 - 86 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 352.662 ms 8 - 18 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA7255P ADP Qualcomm® SA7255P TFLITE 479.613 ms 8 - 18 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 109.667 ms 7 - 10 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 24.736 ms 0 - 102 MB NPU EasyOCR.dlc
EasyOCRRecognizer float SA8295P ADP Qualcomm® SA8295P TFLITE 208.124 ms 8 - 26 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA8295P ADP Qualcomm® SA8295P QNN_DLC 40.581 ms 0 - 194 MB NPU EasyOCR.dlc
EasyOCRRecognizer float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 102.007 ms 6 - 9 MB CPU EasyOCR.tflite
EasyOCRRecognizer float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 24.801 ms 0 - 103 MB NPU EasyOCR.dlc
EasyOCRRecognizer float SA8775P ADP Qualcomm® SA8775P TFLITE 352.662 ms 8 - 18 MB CPU EasyOCR.tflite
EasyOCRRecognizer float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 93.664 ms 9 - 29 MB CPU EasyOCR.tflite
EasyOCRRecognizer float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 18.627 ms 0 - 464 MB NPU EasyOCR.dlc
EasyOCRRecognizer float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 26.499 ms 0 - 273 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 111.258 ms 11 - 23 MB CPU EasyOCR.tflite
EasyOCRRecognizer float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 16.059 ms 0 - 473 MB NPU EasyOCR.dlc
EasyOCRRecognizer float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 21.397 ms 0 - 279 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 84.689 ms 13 - 25 MB CPU EasyOCR.tflite
EasyOCRRecognizer float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 19.914 ms 0 - 302 MB NPU EasyOCR.onnx.zip
EasyOCRRecognizer float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 24.52 ms 73 - 73 MB NPU EasyOCR.dlc
EasyOCRRecognizer float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 35.965 ms 12 - 12 MB NPU EasyOCR.onnx.zip

Installation

Install the package via pip:

pip install "qai-hub-models[easyocr]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.easyocr.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.easyocr.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.easyocr.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.easyocr import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on EasyOCR's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of EasyOCR can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community