See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/SmolLM2-360M
bf16: true
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- cd016dea0377fb61_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cd016dea0377fb61_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 16
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: prxy5604/14fa5f11-b64a-451f-9e67-9b1a06564944
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.2
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 750
micro_batch_size: 16
mlflow_experiment_name: /tmp/cd016dea0377fb61_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 8
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: baef4be1-8fae-4494-972e-0ac0dd08b89e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: baef4be1-8fae-4494-972e-0ac0dd08b89e
warmup_steps: 100
weight_decay: 0.01
xformers_attention: null
14fa5f11-b64a-451f-9e67-9b1a06564944
This model is a fine-tuned version of unsloth/SmolLM2-360M on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5381
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 750
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0007 | 1 | 0.7434 |
| 0.5931 | 0.1033 | 150 | 0.5951 |
| 0.5289 | 0.2066 | 300 | 0.5624 |
| 0.5078 | 0.3099 | 450 | 0.5471 |
| 0.5173 | 0.4132 | 600 | 0.5384 |
| 0.5151 | 0.5165 | 750 | 0.5381 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support