metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
What is the anticipated total capital investment range for fiscal year
2024 related to property and equipment?
sentences:
- >-
Apollo, which we began offering as a commercial solution in 2021, is a
cloud-agnostic, single control layer that coordinates ongoing delivery
of new features, security updates, and platform configurations, helping
to ensure the continuous operation of critical systems.
- >-
During fiscal year 2024, we expect to use our existing cash and cash
equivalents, our marketable securities, and the cash generated by our
operations to fund our capital investments of approximately $1.10
billion to $1.30 billion related to property and equipment.
- >-
Joseph F. Wayland was appointed as General Counsel and Secretary of
Chubb Limited in July 2013.
- source_sentence: >-
What was the effective price per share of class A common stock for fiscal
2023 under the U.S. retrospective responsibility plan?
sentences:
- We operated 692 gas stations at the end of 2023.
- >-
The effective price per share for class A common stock under the U.S.
retrospective responsibility plan for fiscal 2023 was $221.33,
calculated using the weighted-average price based on the volume-weighted
average price during the pricing period.
- >-
For a description of our material pending legal proceedings, see Legal
Matters in Array 10 of the Notes to Consolidated Financial Statements
included in Part II, Item 8 of this Annual Report on...
- source_sentence: >-
What financial challenge did the company face in 2017 and how did it
impact them legally?
sentences:
- >-
In 2017, we experienced a material cybersecurity incident following a
criminal attack on our systems that involved the theft of personal
information of consumers. As a result of the 2017 cybersecurity
incident, we were subject to proceedings and investigations.
- >-
The overall net effect on our gross margin from inventory provisions and
sales of items previously written down was an unfavorable impact of 7.5%
in fiscal year 2023 and 0.9% in fiscal year 2022.
- >-
The adjusted after-tax return on invested capital (ROIC) is computed by
dividing the after-tax operating profit, excluding rent expenses, by the
total invested capital which factors in the capitalization of operating
leases.
- source_sentence: What is the title of Item 8 in the document?
sentences:
- >-
Research and development expenses for fiscal year 2023 increased by $142
million over the previous fiscal year.
- >-
As of January 28, 2023, the company was authorized to issue up to
10,000,000 preferred shares, each with a par value of $0.01. However,
there were no preferred shares issued and outstanding as of January 28,
2023 and the previous year as well.
- >-
Item 8 of the document is titled 'Financial Statements and Supplementary
Data'.
- source_sentence: >-
How many shares were outstanding at the beginning of 2023 and what was
their aggregate intrinsic value?
sentences:
- >-
At the beginning of 2023, there were 355 shares outstanding with an
aggregate intrinsic value of $142,916.
- >-
In IBM’s 2023 Annual Report to Stockholders, the Financial Statements
and Supplementary Data are included on pages 44 through 121.
- >-
Privacy and data protection regulations affect operations by dictating
how data is used and handled, impacting product offering and operation.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7171428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8414285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7171428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28047619047619043
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09071428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7171428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8414285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8148141512407042
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7849903628117916
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7887661106132665
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7171428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8471428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7171428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28238095238095234
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7171428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8471428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8146547679133024
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7843815192743763
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7879908541996482
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7171428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8414285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9014285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7171428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28047619047619043
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09014285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7171428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8414285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9014285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.81391710609103
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7854092970521545
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7894965954567308
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7128571428571429
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8585714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9028571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7128571428571429
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2747619047619047
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1717142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09028571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7128571428571429
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8585714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9028571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8071617730563218
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7765963718820862
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7803238233984962
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7942857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8314285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8728571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26476190476190475
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16628571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08728571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7942857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8314285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8728571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7805313652937041
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7512346938775507
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7553555070551027
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("phucvt0302/bge-base-financial-matryoshka")
sentences = [
'How many shares were outstanding at the beginning of 2023 and what was their aggregate intrinsic value?',
'At the beginning of 2023, there were 355 shares outstanding with an aggregate intrinsic value of $142,916.',
'In IBM’s 2023 Annual Report to Stockholders, the Financial Statements and Supplementary Data are included on pages 44 through 121.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7171 |
| cosine_accuracy@3 |
0.8414 |
| cosine_accuracy@5 |
0.87 |
| cosine_accuracy@10 |
0.9071 |
| cosine_precision@1 |
0.7171 |
| cosine_precision@3 |
0.2805 |
| cosine_precision@5 |
0.174 |
| cosine_precision@10 |
0.0907 |
| cosine_recall@1 |
0.7171 |
| cosine_recall@3 |
0.8414 |
| cosine_recall@5 |
0.87 |
| cosine_recall@10 |
0.9071 |
| cosine_ndcg@10 |
0.8148 |
| cosine_mrr@10 |
0.785 |
| cosine_map@100 |
0.7888 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7171 |
| cosine_accuracy@3 |
0.8471 |
| cosine_accuracy@5 |
0.8671 |
| cosine_accuracy@10 |
0.9086 |
| cosine_precision@1 |
0.7171 |
| cosine_precision@3 |
0.2824 |
| cosine_precision@5 |
0.1734 |
| cosine_precision@10 |
0.0909 |
| cosine_recall@1 |
0.7171 |
| cosine_recall@3 |
0.8471 |
| cosine_recall@5 |
0.8671 |
| cosine_recall@10 |
0.9086 |
| cosine_ndcg@10 |
0.8147 |
| cosine_mrr@10 |
0.7844 |
| cosine_map@100 |
0.788 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7171 |
| cosine_accuracy@3 |
0.8414 |
| cosine_accuracy@5 |
0.8729 |
| cosine_accuracy@10 |
0.9014 |
| cosine_precision@1 |
0.7171 |
| cosine_precision@3 |
0.2805 |
| cosine_precision@5 |
0.1746 |
| cosine_precision@10 |
0.0901 |
| cosine_recall@1 |
0.7171 |
| cosine_recall@3 |
0.8414 |
| cosine_recall@5 |
0.8729 |
| cosine_recall@10 |
0.9014 |
| cosine_ndcg@10 |
0.8139 |
| cosine_mrr@10 |
0.7854 |
| cosine_map@100 |
0.7895 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7129 |
| cosine_accuracy@3 |
0.8243 |
| cosine_accuracy@5 |
0.8586 |
| cosine_accuracy@10 |
0.9029 |
| cosine_precision@1 |
0.7129 |
| cosine_precision@3 |
0.2748 |
| cosine_precision@5 |
0.1717 |
| cosine_precision@10 |
0.0903 |
| cosine_recall@1 |
0.7129 |
| cosine_recall@3 |
0.8243 |
| cosine_recall@5 |
0.8586 |
| cosine_recall@10 |
0.9029 |
| cosine_ndcg@10 |
0.8072 |
| cosine_mrr@10 |
0.7766 |
| cosine_map@100 |
0.7803 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6914 |
| cosine_accuracy@3 |
0.7943 |
| cosine_accuracy@5 |
0.8314 |
| cosine_accuracy@10 |
0.8729 |
| cosine_precision@1 |
0.6914 |
| cosine_precision@3 |
0.2648 |
| cosine_precision@5 |
0.1663 |
| cosine_precision@10 |
0.0873 |
| cosine_recall@1 |
0.6914 |
| cosine_recall@3 |
0.7943 |
| cosine_recall@5 |
0.8314 |
| cosine_recall@10 |
0.8729 |
| cosine_ndcg@10 |
0.7805 |
| cosine_mrr@10 |
0.7512 |
| cosine_map@100 |
0.7554 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 7 tokens
- mean: 20.53 tokens
- max: 46 tokens
|
- min: 8 tokens
- mean: 44.95 tokens
- max: 512 tokens
|
- Samples:
| anchor |
positive |
What does the No Surprises Act require providers to develop and disclose? |
Under the No Surprises Act, which went into effect January 1, 2022, certain providers, including DaVita, are required to develop and disclose a 'Good Faith Estimate' that details the expected charges for furnishing certain items or services. |
What does Gross Merchandise Volume (GMV) represent in financial terms? |
GMV consists of the total value of all paid transactions between users on our platforms during the applicable period inclusive of shipping fees and taxes. |
What was the pre-tax restructuring charge for the fiscal year 2023 related to the discontinuation of certain R&D programs? |
The pre-tax restructuring charge of approximately $0.5 billion in the fiscal year 2023 included the termination of partnered and non-partnered program costs and asset impairments. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 4
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
| 0.9697 |
6 |
- |
0.7993 |
0.7967 |
0.7941 |
0.7845 |
0.7431 |
| 1.6162 |
10 |
2.3395 |
- |
- |
- |
- |
- |
| 1.9394 |
12 |
- |
0.8089 |
0.8086 |
0.8108 |
0.8007 |
0.7669 |
| 2.9091 |
18 |
- |
0.8158 |
0.8134 |
0.8144 |
0.8066 |
0.7761 |
| 3.2323 |
20 |
1.0419 |
- |
- |
- |
- |
- |
| 3.8788 |
24 |
- |
0.8148 |
0.8147 |
0.8139 |
0.8072 |
0.7805 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.6
- Sentence Transformers: 4.1.0
- Transformers: 4.40.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}