MPNet base trained on semantic text similarity
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the projecte-aina/sts-ca dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Languages: en, ca
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pauhidalgoo/finetuned-sts-ca-mpnet-base")
# Run inference
sentences = [
'Però que hi ha de cert en tot això?',
'Però, què hi ha de veritat en tot això?',
'Els camioners dissolen la marxa lenta a les rondes de Barcelona',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.937 |
| spearman_cosine | 0.9918 |
| pearson_manhattan | 0.9582 |
| spearman_manhattan | 0.9876 |
| pearson_euclidean | 0.9594 |
| spearman_euclidean | 0.9888 |
| pearson_dot | 0.9469 |
| spearman_dot | 0.9834 |
| pearson_max | 0.9594 |
| spearman_max | 0.9918 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.5856 |
| spearman_cosine | 0.5855 |
| pearson_manhattan | 0.5881 |
| spearman_manhattan | 0.5787 |
| pearson_euclidean | 0.5851 |
| spearman_euclidean | 0.5755 |
| pearson_dot | 0.5613 |
| spearman_dot | 0.5631 |
| pearson_max | 0.5881 |
| spearman_max | 0.5855 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.6501 |
| spearman_cosine | 0.682 |
| pearson_manhattan | 0.6518 |
| spearman_manhattan | 0.6701 |
| pearson_euclidean | 0.6554 |
| spearman_euclidean | 0.6753 |
| pearson_dot | 0.635 |
| spearman_dot | 0.6458 |
| pearson_max | 0.6554 |
| spearman_max | 0.682 |
Training Details
Training Dataset
projecte-aina/sts-ca
- Dataset: projecte-aina/sts-ca
- Size: 2,073 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 10 tokens
- mean: 32.36 tokens
- max: 82 tokens
- min: 11 tokens
- mean: 30.57 tokens
- max: 68 tokens
- min: 0.0
- mean: 2.56
- max: 5.0
- Samples:
sentence1 sentence2 label Atorga per primer cop les mencions Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència UniversitàriaCreen la menció M. Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència universitària3.5Finalment, afegiu-hi els bolets que haureu saltat en una paella amb oli i deixeu-ho coure tot junt durant 5 minuts.Finalment, poseu-hi les minipastanagues tallades a dauets, els pèsols, rectifiqueu-ho de sal i deixeu-ho coure tot junt durant un parell de minuts més.1.25El TC suspèn el pla d'acció exterior i de relacions amb la UE de la GeneralitatEl Constitucional manté la suspensió del pla estratègic d'acció exterior i relacions amb la UE3.6700000762939453 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
projecte-aina/sts-ca
- Dataset: projecte-aina/sts-ca
- Size: 500 evaluation samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 10 tokens
- mean: 32.94 tokens
- max: 68 tokens
- min: 12 tokens
- mean: 31.42 tokens
- max: 69 tokens
- min: 0.0
- mean: 2.58
- max: 5.0
- Samples:
sentence1 sentence2 label L'euríbor puja una centèsima fins el -0,189% al gener després de setze mesos de caigudesLa morositat de bancs i caixes repunta moderadament fins el 9,44%, després d'onze mesos de caigudes1.6699999570846558Demanen 3 anys de presó a l'ex treballador d'una farmàcia de Lleida per robar més de 550 unitats de Viagra i CialisL'extreballador d'una farmàcia de Lleida accepta sis mesos de presó per robar més de 500 unitats de Viagra i Cialis2.0Es tracta d'un jove de 20 anys que ha estat denunciat als Mossos d'EsquadraEs tracta d'un jove de 21 anys que ha estat denunciat penalment pels Mossos3.0 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 40warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 40max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | spearman_cosine |
|---|---|---|---|
| 3.8462 | 500 | 4.5209 | - |
| 7.6923 | 1000 | 4.1445 | - |
| 11.5385 | 1500 | 3.9291 | - |
| 15.3846 | 2000 | 3.6952 | - |
| 19.2308 | 2500 | 3.5393 | - |
| 23.0769 | 3000 | 3.3778 | - |
| 26.9231 | 3500 | 3.1712 | - |
| 30.7692 | 4000 | 2.8265 | - |
| 34.6154 | 4500 | 2.6265 | - |
| 38.4615 | 5000 | 2.3259 | - |
| 40.0 | 5200 | - | 0.6820 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- -
Model tree for pauhidalgoo/finetuned-sts-ca-mpnet-base
Base model
microsoft/mpnet-baseEvaluation results
- Pearson Cosine on Unknownself-reported0.937
- Spearman Cosine on Unknownself-reported0.992
- Pearson Manhattan on Unknownself-reported0.958
- Spearman Manhattan on Unknownself-reported0.988
- Pearson Euclidean on Unknownself-reported0.959
- Spearman Euclidean on Unknownself-reported0.989
- Pearson Dot on Unknownself-reported0.947
- Spearman Dot on Unknownself-reported0.983
- Pearson Max on Unknownself-reported0.959
- Spearman Max on Unknownself-reported0.992