|
|
--- |
|
|
library_name: transformers |
|
|
license: llama3.2 |
|
|
base_model: deepcogito/cogito-v1-preview-llama-3B |
|
|
--- |
|
|
|
|
|
# creation |
|
|
|
|
|
```python |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
from datasets import load_dataset |
|
|
from llmcompressor import oneshot |
|
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
|
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier |
|
|
|
|
|
model_id = "deepcogito/cogito-v1-preview-llama-3B" |
|
|
model_out = "cogito-v1-preview-llama-3B.w8a8" |
|
|
|
|
|
num_samples = 256 |
|
|
max_seq_len = 4096 |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
def preprocess_fn(example): |
|
|
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} |
|
|
|
|
|
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") |
|
|
ds = ds.shuffle().select(range(num_samples)) |
|
|
ds = ds.map(preprocess_fn) |
|
|
|
|
|
recipe = [ |
|
|
SmoothQuantModifier(smoothing_strength=0.7), |
|
|
GPTQModifier( |
|
|
sequential=True, |
|
|
targets="Linear", |
|
|
scheme="W8A8", |
|
|
ignore=["lm_head"], |
|
|
dampening_frac=0.01, |
|
|
) |
|
|
] |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_id, |
|
|
device_map="auto", |
|
|
torch_dtype="bfloat16", |
|
|
) |
|
|
|
|
|
oneshot( |
|
|
model=model, |
|
|
dataset=ds, |
|
|
recipe=recipe, |
|
|
max_seq_length=max_seq_len, |
|
|
num_calibration_samples=num_samples, |
|
|
output_dir=model_out, |
|
|
) |
|
|
``` |
|
|
|