SamSum
This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 49.01
- Rouge2: 25.06
- Rougel: 40.97
- Rougelsum: 45.4
- Bertscore Precision: 73.48
- Bertscore Recall: 71.67
- Bertscore F1: 72.25
- Meteor: 42.51
- Bleu: 18.19
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 | Meteor | Bleu |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0 | 1.0 | 1842 | nan | 49.01 | 25.06 | 40.97 | 45.4 | 73.48 | 71.67 | 72.25 | 42.51 | 18.19 |
| 0.0 | 2.0 | 3684 | nan | 49.01 | 25.06 | 40.97 | 45.4 | 73.48 | 71.67 | 72.25 | 42.51 | 18.19 |
| 0.0 | 3.0 | 5526 | nan | 49.01 | 25.06 | 40.97 | 45.4 | 73.48 | 71.67 | 72.25 | 42.51 | 18.19 |
Framework versions
- PEFT 0.17.1
- Transformers 4.57.0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1 so this is updates model card with new evaluation scores update it to look good
- Downloads last month
- 34
Model tree for noviciusss/flan-t5-base-samsum
Base model
google/flan-t5-base