| import json | |
| import tokenizers | |
| import torch | |
| import transformers | |
| def shrink_vocab(tokenizer, new_vocab_size): | |
| tokenizer_json = json.loads(tokenizer._tokenizer.to_str()) | |
| vocab = tokenizer_json["model"]["vocab"] | |
| if tokenizer_json["model"]["type"] == "BPE": | |
| new_vocab = { token: i for token, i in vocab.items() if i < new_vocab_size } | |
| merges = tokenizer_json["model"]["merges"] | |
| new_merges = [] | |
| for i in range(len(merges)): | |
| if len( merges[i].split()) == 2: | |
| a, b = merges[i].split() | |
| else: | |
| print('skip') | |
| continue | |
| new_token = "".join((a, b)) | |
| if a in new_vocab and b in new_vocab and new_token in new_vocab: | |
| new_merges.append(merges[i]) | |
| tokenizer_json["model"]["merges"] = new_merges | |
| elif tokenizer_json["model"]["type"] == "Unigram": | |
| new_vocab = vocab[:new_vocab_size] | |
| elif tokenizer_json["model"]["type"] == "WordPiece" or tokenizer_json["model"]["type"] == "WordLevel": | |
| new_vocab = { token: i for token, i in vocab.items() if i < new_vocab_size } | |
| else: | |
| raise ValueError(f"don't know how to handle {tokenizer_json['model']['type']}") | |
| tokenizer_json["model"]["vocab"] = new_vocab | |
| tokenizer._tokenizer = tokenizers.Tokenizer.from_str(json.dumps(tokenizer_json)) | |
| def main(): | |
| tokenizer = transformers.AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") | |
| shrink_vocab(tokenizer, new_vocab_size=2000) | |
| tokenizer.save_pretrained(".") | |
| config = transformers.AutoConfig.from_pretrained('noamwies/llama-test-gqa-with-better-transformer') | |
| model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=config.torch_dtype) | |
| torch.save(model.state_dict(), 'pytorch_model.bin') | |
| if __name__ == '__main__': | |
| main() | |