Upload create_miniature_model.py
Browse files- create_miniature_model.py +46 -0
create_miniature_model.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
import tokenizers
|
| 4 |
+
import torch
|
| 5 |
+
import transformers
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def shrink_vocab(tokenizer, new_vocab_size):
|
| 9 |
+
tokenizer_json = json.loads(tokenizer._tokenizer.to_str())
|
| 10 |
+
vocab = tokenizer_json["model"]["vocab"]
|
| 11 |
+
if tokenizer_json["model"]["type"] == "BPE":
|
| 12 |
+
new_vocab = { token: i for token, i in vocab.items() if i < new_vocab_size }
|
| 13 |
+
merges = tokenizer_json["model"]["merges"]
|
| 14 |
+
new_merges = []
|
| 15 |
+
for i in range(len(merges)):
|
| 16 |
+
if len( merges[i].split()) == 2:
|
| 17 |
+
a, b = merges[i].split()
|
| 18 |
+
else:
|
| 19 |
+
print('skip')
|
| 20 |
+
continue
|
| 21 |
+
new_token = "".join((a, b))
|
| 22 |
+
if a in new_vocab and b in new_vocab and new_token in new_vocab:
|
| 23 |
+
new_merges.append(merges[i])
|
| 24 |
+
tokenizer_json["model"]["merges"] = new_merges
|
| 25 |
+
elif tokenizer_json["model"]["type"] == "Unigram":
|
| 26 |
+
new_vocab = vocab[:new_vocab_size]
|
| 27 |
+
elif tokenizer_json["model"]["type"] == "WordPiece" or tokenizer_json["model"]["type"] == "WordLevel":
|
| 28 |
+
new_vocab = { token: i for token, i in vocab.items() if i < new_vocab_size }
|
| 29 |
+
else:
|
| 30 |
+
raise ValueError(f"don't know how to handle {tokenizer_json['model']['type']}")
|
| 31 |
+
tokenizer_json["model"]["vocab"] = new_vocab
|
| 32 |
+
tokenizer._tokenizer = tokenizers.Tokenizer.from_str(json.dumps(tokenizer_json))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def main():
|
| 36 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
| 37 |
+
shrink_vocab(tokenizer, new_vocab_size=2000)
|
| 38 |
+
tokenizer.save_pretrained(".")
|
| 39 |
+
|
| 40 |
+
config = transformers.AutoConfig.from_pretrained('noamwies/llama-test-gqa-with-better-transformer')
|
| 41 |
+
model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=config.torch_dtype)
|
| 42 |
+
torch.save(model.state_dict(), 'pytorch_model.bin')
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
if __name__ == '__main__':
|
| 46 |
+
main()
|