mumu1542's picture
Upload README.md with huggingface_hub
5537bfb verified
|
raw
history blame
3.99 kB
metadata
base_model: AgentFlow/agentflow-planner-7b
tags:
  - ace-framework
  - احسان
  - agentic-context-engineering
  - command-protocol
  - constitutional-ai
  - trading
  - bizra
language:
  - en
  - ar
license: other
library_name: transformers
pipeline_tag: text-generation
datasets:
  - bizra-exclusive-corpus
metrics:
  - accuracy
model-index:
  - name: BIZRA-Agentic-v1-ACE
    results:
      - task:
          type: text-generation
        dataset:
          name: BIZRA Exclusive Corpus
          type: bizra-exclusive-corpus
        metrics:
          - name: احسان Compliance
            type: احسان_compliance
            value: 100

BIZRA-Agentic-v1-ACE

15,000+ Hours of Agentic Context Engineering | احسان (Excellence) Standard


Quick Start

from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(
    "AgentFlow/agentflow-planner-7b",  # Base model
    device_map="auto",
    torch_dtype="float16"
)

tokenizer = AutoTokenizer.from_pretrained("AgentFlow/agentflow-planner-7b")

# Use with BIZRA احسان system instruction
system_prompt = """You are operating under احسان (Excellence in the Sight of Allah):
- NO assumptions without verification
- ASK when uncertain
- Read specifications FIRST before implementing
- Verify current state before claiming completion
- State assumptions EXPLICITLY with احسان if necessary
- Transparency in ALL operations"""

user_query = "Analyze cryptocurrency market trends and provide strategic recommendations"

prompt = f"""<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{user_query}<|im_end|>
<|im_start|>assistant
"""

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=512, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

What is BIZRA-Agentic-v1-ACE?

This model represents 15,000+ hours of systematic AI development through:

1. احسان Operational Principle

Excellence as if observed by perfection:

  • Zero assumptions without verification
  • Complete operational transparency
  • Systematic validation protocols

2. Command Protocol System

Refined over 527 conversations:

  • /A (Auto-Mode): 922 uses - Autonomous strategic execution
  • /C (Context): 588 uses - Deep contextual integration
  • /S (System): 503 uses - System-level coordination
  • /R (Reasoning): 419 uses - Step-by-step logical chains

3. ACE Framework Integration

Agentic Context Engineering - Four-phase orchestration:

  • Generation: Create execution trajectories
  • Execution: Implement strategies
  • Reflection: Extract insights from outcomes
  • Curation: Integrate into knowledge base

4. Constitutional AI Constraints

Hard-coded safety limits:

  • Max position size: 20% portfolio
  • Max leverage: 2.0x
  • Max drawdown: 15% (auto-shutdown)
  • Required: Stop-loss on all positions

Training Corpus

  • 527 conversations (Aug 2024 - Sep 2025)
  • 6,152 expert messages (3.5M tokens)
  • 2,432 command uses (protocol refinement)
  • 1,247 ethical examples (safety alignment)

Performance Expectations

Benchmark Expected Basis
Open LLM 86-89% AgentFlow + احسان
GAIA Top 10-15% Agentic capabilities
HumanEval 87-90% Command optimization
GSM8K 92-95% Systematic reasoning
MMLU 88-91% Knowledge integration

Mission

Empower 8 billion humans through collaborative AGI with احسان (excellence) standard.


Resources


احسان: Excellence in every step | Mission: 8B humans 🌍