SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on an augmented version of stsb_multi_es dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-16-5e")
sentences = [
'El avión está tocando tierra.',
'El avión animado se encuentra en proceso de aterrizaje.',
'Un pequeño niño montado en un columpio en el parque.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8382 |
| spearman_cosine |
0.843 |
| pearson_manhattan |
0.8337 |
| spearman_manhattan |
0.8449 |
| pearson_euclidean |
0.8329 |
| spearman_euclidean |
0.8442 |
| pearson_dot |
0.8287 |
| spearman_dot |
0.8323 |
| pearson_max |
0.8382 |
| spearman_max |
0.8449 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8335 |
| spearman_cosine |
0.8406 |
| pearson_manhattan |
0.8317 |
| spearman_manhattan |
0.8426 |
| pearson_euclidean |
0.8306 |
| spearman_euclidean |
0.8415 |
| pearson_dot |
0.8173 |
| spearman_dot |
0.823 |
| pearson_max |
0.8335 |
| spearman_max |
0.8426 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.824 |
| spearman_cosine |
0.8356 |
| pearson_manhattan |
0.8261 |
| spearman_manhattan |
0.8355 |
| pearson_euclidean |
0.8256 |
| spearman_euclidean |
0.8362 |
| pearson_dot |
0.7925 |
| spearman_dot |
0.7993 |
| pearson_max |
0.8261 |
| spearman_max |
0.8362 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8099 |
| spearman_cosine |
0.8305 |
| pearson_manhattan |
0.8209 |
| spearman_manhattan |
0.8308 |
| pearson_euclidean |
0.8195 |
| spearman_euclidean |
0.8302 |
| pearson_dot |
0.7413 |
| spearman_dot |
0.749 |
| pearson_max |
0.8209 |
| spearman_max |
0.8308 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.7778 |
| spearman_cosine |
0.8152 |
| pearson_manhattan |
0.8007 |
| spearman_manhattan |
0.8116 |
| pearson_euclidean |
0.8001 |
| spearman_euclidean |
0.8111 |
| pearson_dot |
0.6541 |
| spearman_dot |
0.659 |
| pearson_max |
0.8007 |
| spearman_max |
0.8152 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.7277 |
| spearman_cosine |
0.7806 |
| pearson_manhattan |
0.766 |
| spearman_manhattan |
0.7752 |
| pearson_euclidean |
0.7674 |
| spearman_euclidean |
0.7773 |
| pearson_dot |
0.5395 |
| spearman_dot |
0.5342 |
| pearson_max |
0.7674 |
| spearman_max |
0.7806 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.6737 |
| spearman_cosine |
0.7425 |
| pearson_manhattan |
0.7187 |
| spearman_manhattan |
0.728 |
| pearson_euclidean |
0.7235 |
| spearman_euclidean |
0.7374 |
| pearson_dot |
0.447 |
| spearman_dot |
0.4424 |
| pearson_max |
0.7235 |
| spearman_max |
0.7425 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8637 |
| spearman_cosine |
0.8775 |
| pearson_manhattan |
0.8739 |
| spearman_manhattan |
0.8771 |
| pearson_euclidean |
0.8743 |
| spearman_euclidean |
0.8774 |
| pearson_dot |
0.8587 |
| spearman_dot |
0.8693 |
| pearson_max |
0.8743 |
| spearman_max |
0.8775 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8609 |
| spearman_cosine |
0.8761 |
| pearson_manhattan |
0.8723 |
| spearman_manhattan |
0.8755 |
| pearson_euclidean |
0.8727 |
| spearman_euclidean |
0.8759 |
| pearson_dot |
0.8498 |
| spearman_dot |
0.8568 |
| pearson_max |
0.8727 |
| spearman_max |
0.8761 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8546 |
| spearman_cosine |
0.8715 |
| pearson_manhattan |
0.8698 |
| spearman_manhattan |
0.8737 |
| pearson_euclidean |
0.8699 |
| spearman_euclidean |
0.8737 |
| pearson_dot |
0.8131 |
| spearman_dot |
0.8076 |
| pearson_max |
0.8699 |
| spearman_max |
0.8737 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8388 |
| spearman_cosine |
0.8645 |
| pearson_manhattan |
0.8611 |
| spearman_manhattan |
0.8667 |
| pearson_euclidean |
0.8622 |
| spearman_euclidean |
0.868 |
| pearson_dot |
0.7492 |
| spearman_dot |
0.7364 |
| pearson_max |
0.8622 |
| spearman_max |
0.868 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8168 |
| spearman_cosine |
0.8585 |
| pearson_manhattan |
0.8518 |
| spearman_manhattan |
0.8607 |
| pearson_euclidean |
0.8534 |
| spearman_euclidean |
0.8624 |
| pearson_dot |
0.6646 |
| spearman_dot |
0.6473 |
| pearson_max |
0.8534 |
| spearman_max |
0.8624 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.7814 |
| spearman_cosine |
0.8425 |
| pearson_manhattan |
0.8315 |
| spearman_manhattan |
0.8432 |
| pearson_euclidean |
0.8345 |
| spearman_euclidean |
0.8466 |
| pearson_dot |
0.5521 |
| spearman_dot |
0.5319 |
| pearson_max |
0.8345 |
| spearman_max |
0.8466 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.7198 |
| spearman_cosine |
0.8072 |
| pearson_manhattan |
0.7806 |
| spearman_manhattan |
0.7998 |
| pearson_euclidean |
0.7879 |
| spearman_euclidean |
0.809 |
| pearson_dot |
0.4496 |
| spearman_dot |
0.4412 |
| pearson_max |
0.7879 |
| spearman_max |
0.809 |
Training Details
Training Dataset
stsb_multi_es_aug
- Dataset: stsb_multi_es_aug
- Size: 2,697 training samples
- Columns:
sentence1, sentence2, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
| type |
string |
string |
float |
| details |
- min: 8 tokens
- mean: 22.25 tokens
- max: 68 tokens
|
- min: 8 tokens
- mean: 22.01 tokens
- max: 79 tokens
|
- min: 0.0
- mean: 2.67
- max: 5.0
|
- Samples:
| sentence1 |
sentence2 |
score |
El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha. |
Un ave de color amarillo descansaba tranquilamente en una rama. |
3.200000047683716 |
Una chica está tocando la flauta en un parque. |
Un grupo de músicos está tocando en un escenario al aire libre. |
1.286 |
La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece |
La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere |
4.199999809265137 |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
stsb_multi_es_aug
- Dataset: stsb_multi_es_aug
- Size: 697 evaluation samples
- Columns:
sentence1, sentence2, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
| type |
string |
string |
float |
| details |
- min: 8 tokens
- mean: 22.76 tokens
- max: 67 tokens
|
- min: 7 tokens
- mean: 22.26 tokens
- max: 63 tokens
|
- min: 0.0
- mean: 2.3
- max: 5.0
|
- Samples:
| sentence1 |
sentence2 |
score |
Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas. |
Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos. |
4.199999809265137 |
"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud" |
"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar." |
3.5 |
El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario. |
Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida. |
3.691999912261963 |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
num_train_epochs: 5
warmup_ratio: 0.1
fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
sts-dev-128_spearman_cosine |
sts-dev-16_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-32_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-768_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-16_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-32_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
| 0.5917 |
100 |
30.7503 |
30.6172 |
0.8117 |
0.7110 |
0.8179 |
0.7457 |
0.8244 |
0.7884 |
0.8252 |
- |
- |
- |
- |
- |
- |
- |
| 1.1834 |
200 |
30.4696 |
32.6422 |
0.7952 |
0.7198 |
0.8076 |
0.7491 |
0.8125 |
0.7813 |
0.8142 |
- |
- |
- |
- |
- |
- |
- |
| 1.7751 |
300 |
29.9233 |
31.5469 |
0.8152 |
0.7435 |
0.8250 |
0.7737 |
0.8302 |
0.8006 |
0.8305 |
- |
- |
- |
- |
- |
- |
- |
| 2.3669 |
400 |
29.0716 |
31.8088 |
0.8183 |
0.7405 |
0.8248 |
0.7758 |
0.8299 |
0.8057 |
0.8324 |
- |
- |
- |
- |
- |
- |
- |
| 2.9586 |
500 |
28.7971 |
32.6032 |
0.8176 |
0.7430 |
0.8241 |
0.7777 |
0.8289 |
0.8025 |
0.8316 |
- |
- |
- |
- |
- |
- |
- |
| 3.5503 |
600 |
27.4766 |
34.7911 |
0.8241 |
0.7400 |
0.8314 |
0.7730 |
0.8369 |
0.8061 |
0.8394 |
- |
- |
- |
- |
- |
- |
- |
| 4.1420 |
700 |
27.0639 |
35.7418 |
0.8294 |
0.7466 |
0.8354 |
0.7784 |
0.8389 |
0.8107 |
0.8409 |
- |
- |
- |
- |
- |
- |
- |
| 4.7337 |
800 |
26.5119 |
36.2014 |
0.8305 |
0.7425 |
0.8356 |
0.7806 |
0.8406 |
0.8152 |
0.8430 |
- |
- |
- |
- |
- |
- |
- |
| 5.0 |
845 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.8645 |
0.8072 |
0.8715 |
0.8425 |
0.8761 |
0.8585 |
0.8775 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}