mradermacher's picture
auto-patch README.md
88ee1e8 verified
|
raw
history blame
3.94 kB
---
base_model: armand0e/gpt-oss-20b-glm-4.6-distill
datasets:
- Liontix/glm-4.6-250x
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- gpt_oss
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: MXFP4_MOE Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/armand0e/gpt-oss-20b-glm-4.6-distill
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#gpt-oss-20b-glm-4.6-distill-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-i1-GGUF/resolve/main/gpt-oss-20b-glm-4.6-distill.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-i1-GGUF/resolve/main/gpt-oss-20b-glm-4.6-distill.i1-IQ2_M.gguf) | i1-IQ2_M | 12.2 | |
| [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-i1-GGUF/resolve/main/gpt-oss-20b-glm-4.6-distill.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-i1-GGUF/resolve/main/gpt-oss-20b-glm-4.6-distill.i1-Q2_K.gguf) | i1-Q2_K | 12.2 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-i1-GGUF/resolve/main/gpt-oss-20b-glm-4.6-distill.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.2 | |
| [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-i1-GGUF/resolve/main/gpt-oss-20b-glm-4.6-distill.i1-IQ3_M.gguf) | i1-IQ3_M | 12.3 | |
| [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-i1-GGUF/resolve/main/gpt-oss-20b-glm-4.6-distill.i1-Q3_K_M.gguf) | i1-Q3_K_M | 13.0 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-i1-GGUF/resolve/main/gpt-oss-20b-glm-4.6-distill.i1-Q4_K_S.gguf) | i1-Q4_K_S | 14.8 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/gpt-oss-20b-glm-4.6-distill-i1-GGUF/resolve/main/gpt-oss-20b-glm-4.6-distill.i1-Q4_K_M.gguf) | i1-Q4_K_M | 15.9 | fast, recommended |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->