Transformers
GGUF
English
Mixture of Experts
frankenmoe
Merge
mergekit
lazymergekit
Locutusque/TinyMistral-248M-v2
Locutusque/TinyMistral-248M-v2.5
Locutusque/TinyMistral-248M-v2.5-Instruct
jtatman/tinymistral-v2-pycoder-instruct-248m
Felladrin/TinyMistral-248M-SFT-v4
Locutusque/TinyMistral-248M-v2-Instruct
imatrix
| base_model: M4-ai/TinyMistral-6x248M | |
| datasets: | |
| - nampdn-ai/mini-peS2o | |
| language: | |
| - en | |
| library_name: transformers | |
| license: apache-2.0 | |
| mradermacher: | |
| readme_rev: 1 | |
| quantized_by: mradermacher | |
| tags: | |
| - moe | |
| - frankenmoe | |
| - merge | |
| - mergekit | |
| - lazymergekit | |
| - Locutusque/TinyMistral-248M-v2 | |
| - Locutusque/TinyMistral-248M-v2.5 | |
| - Locutusque/TinyMistral-248M-v2.5-Instruct | |
| - jtatman/tinymistral-v2-pycoder-instruct-248m | |
| - Felladrin/TinyMistral-248M-SFT-v4 | |
| - Locutusque/TinyMistral-248M-v2-Instruct | |
| ## About | |
| <!-- ### quantize_version: 2 --> | |
| <!-- ### output_tensor_quantised: 1 --> | |
| <!-- ### convert_type: hf --> | |
| <!-- ### vocab_type: --> | |
| <!-- ### tags: nicoboss --> | |
| weighted/imatrix quants of https://huggingface.co/M4-ai/TinyMistral-6x248M | |
| <!-- provided-files --> | |
| ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#TinyMistral-6x248M-i1-GGUF).*** | |
| static quants are available at https://huggingface.co/mradermacher/TinyMistral-6x248M-GGUF | |
| ## Usage | |
| If you are unsure how to use GGUF files, refer to one of [TheBloke's | |
| READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for | |
| more details, including on how to concatenate multi-part files. | |
| ## Provided Quants | |
| (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | |
| | Link | Type | Size/GB | Notes | | |
| |:-----|:-----|--------:|:------| | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ1_S.gguf) | i1-IQ1_S | 0.3 | for the desperate | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ1_M.gguf) | i1-IQ1_M | 0.3 | mostly desperate | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.4 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.4 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ2_S.gguf) | i1-IQ2_S | 0.4 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ2_M.gguf) | i1-IQ2_M | 0.4 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.5 | very low quality | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q2_K.gguf) | i1-Q2_K | 0.5 | IQ3_XXS probably better | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.5 | lower quality | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.5 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.5 | IQ3_XS probably better | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ3_S.gguf) | i1-IQ3_S | 0.5 | beats Q3_K* | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ3_M.gguf) | i1-IQ3_M | 0.6 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.6 | IQ3_S probably better | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.6 | IQ3_M probably better | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.6 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.7 | prefer IQ4_XS | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q4_0.gguf) | i1-Q4_0 | 0.7 | fast, low quality | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.7 | optimal size/speed/quality | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.7 | fast, recommended | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q4_1.gguf) | i1-Q4_1 | 0.7 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.8 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.8 | | | |
| | [GGUF](https://huggingface.co/mradermacher/TinyMistral-6x248M-i1-GGUF/resolve/main/TinyMistral-6x248M.i1-Q6_K.gguf) | i1-Q6_K | 0.9 | practically like static Q6_K | | |
| Here is a handy graph by ikawrakow comparing some lower-quality quant | |
| types (lower is better): | |
|  | |
| And here are Artefact2's thoughts on the matter: | |
| https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 | |
| ## FAQ / Model Request | |
| See https://huggingface.co/mradermacher/model_requests for some answers to | |
| questions you might have and/or if you want some other model quantized. | |
| ## Thanks | |
| I thank my company, [nethype GmbH](https://www.nethype.de/), for letting | |
| me use its servers and providing upgrades to my workstation to enable | |
| this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. | |
| <!-- end --> | |