magiccodingman's picture
File name changes
94a426d verified
---
license: apache-2.0
tags:
- mxfp4_hybrid
- gguf
- text-generation
- quantized
- cpu
- gpu
- mxfp4
- mxfp4_moe
- magicquant
- magic_quant
- IQ4_NL
base_model:
- unsloth/Seed-OSS-36B-Instruct
---
# MagicQuant GGUF Hybrids - Seed OSS 36B Instruct
> **MagicQuant is an automated quantization, benchmarking, and evolutionary hybrid-GGUF search system for LLMs.**
Each release includes models optimized to outperform standard baseline quants (Q8, Q6, Q5, Q4).
If a baseline GGUF exists in this repo, the evolutionary engine couldn’t beat it.
If a baseline is missing, it’s because a hybrid configuration outperformed it so completely that including the baseline would've been pointless.
These hybrid GGUFs are built to be as small, fast, and low-drift as possible while preserving model capability.
To dive deeper into how MagicQuant works, see the main repo:
[MagicQuant on GitHub (by MagicCodingMan)](https://github.com/magiccodingman/MagicQuant-Wiki)
**Notes:**
* The HuggingFace hardware compatibility where it shows the bits is usually wrong. It doesn't understand hybrid mixes, so don't trust it.
* Naming scheme can be found on the MagicQuant Wiki.
* (tips) Less precision loss means less brain damage. More TPS means faster! Smaller is always better right?
**Precision Loss Guide**
* **0–0.1%** → God-tier, scientifically exact
* **0.1–1%** → True near-lossless, agent-ready
* **1–3%** → Minimal loss, great for personal use
* **3–5%** → Borderline, but still functional
* **5%+** → Toys, not tools, outside MagicQuant’s scope
[Learn more about precision loss here](https://github.com/magiccodingman/MagicQuant-Wiki/blob/main/docs/precision-loss-guide.md).
### Table - File Size + TPS + Avg Precision Loss
| model_name | file_size_gb | bench_tps | avg_prec_loss |
| ------------------------------------------------------------------------------------------------------------------------------------------------ | ------------ | --------- | ------------- |
| [mxfp4_moe-HK-B16-EO-Q5K-QUD-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-HK-B16-EO-Q5K-QUD-Q8_0.gguf?download=true) | 39.71 | 17.73 | 0.0213% |
| [mxfp4_moe-O-MXFP4-EHQKUD-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-O-MXFP4-EHQKUD-Q8_0.gguf?download=true) | 35.78 | 18.72 | 0.0272% |
| [mxfp4_moe-E-B16-D-IQ4NL-KOU-Q6K-HQ-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-E-B16-D-IQ4NL-KOU-Q6K-HQ-Q8_0.gguf?download=true) | 28.02 | 24.27 | 0.1768% |
| [mxfp4_moe-EHQKOUD-Q6K](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-EHQKOUD-Q6K.gguf?download=true) | 27.63 | 23.34 | 0.2037% |
| [mxfp4_moe-EHQKOUD-IQ4NL](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-EHQKOUD-IQ4NL.gguf?download=true) | 18.95 | 32.00 | 0.2709% |
| [mxfp4_moe-HQKU-IQ4NL-EOD-MXFP4](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-HQKU-IQ4NL-EOD-MXFP4.gguf?download=true) | 18.66 | 26.90 | 0.7098% |
| [MXFP4_MOE](./../../resolve/main/Seed-OSS-36B-Instruct-MXFP4_MOE.gguf?download=true) | 17.90 | 20.46 | 2.7338% |
### Table - PPL Columns
| model_name | gen | gen_er | code | code_er | math | math_er |
| ------------------------------------------------------------------------------------------------------------------------------------------------ | ------ | ------ | ------ | ------- | ------ | ------- |
| [mxfp4_moe-HK-B16-EO-Q5K-QUD-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-HK-B16-EO-Q5K-QUD-Q8_0.gguf?download=true) | 6.8901 | 0.1680 | 1.4127 | 0.0095 | 5.4434 | 0.1208 |
| [mxfp4_moe-O-MXFP4-EHQKUD-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-O-MXFP4-EHQKUD-Q8_0.gguf?download=true) | 6.8866 | 0.1679 | 1.4130 | 0.0095 | 5.4474 | 0.1210 |
| [mxfp4_moe-E-B16-D-IQ4NL-KOU-Q6K-HQ-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-E-B16-D-IQ4NL-KOU-Q6K-HQ-Q8_0.gguf?download=true) | 6.8901 | 0.1682 | 1.4156 | 0.0096 | 5.4284 | 0.1203 |
| [mxfp4_moe-EHQKOUD-Q6K](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-EHQKOUD-Q6K.gguf?download=true) | 6.9012 | 0.1685 | 1.4135 | 0.0095 | 5.4637 | 0.1218 |
| [mxfp4_moe-EHQKOUD-IQ4NL](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-EHQKOUD-IQ4NL.gguf?download=true) | 6.8712 | 0.1654 | 1.4162 | 0.0095 | 5.4627 | 0.1201 |
| [mxfp4_moe-HQKU-IQ4NL-EOD-MXFP4](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-HQKU-IQ4NL-EOD-MXFP4.gguf?download=true) | 6.8452 | 0.1639 | 1.4140 | 0.0094 | 5.5223 | 0.1222 |
| [MXFP4_MOE](./../../resolve/main/Seed-OSS-36B-Instruct-MXFP4_MOE.gguf?download=true) | 7.1007 | 0.1728 | 1.4351 | 0.0097 | 5.6360 | 0.1239 |
### Table - Precision Loss Columns
| model_name | loss_general | loss_code | loss_math |
| ------------------------------------------------------------------------------------------------------------------------------------------------ | ------------ | --------- | --------- |
| [mxfp4_moe-HK-B16-EO-Q5K-QUD-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-HK-B16-EO-Q5K-QUD-Q8_0.gguf?download=true) | 0.0421 | 0.0071 | 0.0147 |
| [mxfp4_moe-O-MXFP4-EHQKUD-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-O-MXFP4-EHQKUD-Q8_0.gguf?download=true) | 0.0087 | 0.0142 | 0.0588 |
| [mxfp4_moe-O-IQ4NL-EHQKUD-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-O-IQ4NL-EHQKUD-Q8_0.gguf?download=true) | 0.0087 | 0.0142 | 0.0588 |
| [mxfp4_moe-E-B16-D-IQ4NL-KOU-Q6K-HQ-Q8_0](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-E-B16-D-IQ4NL-KOU-Q6K-HQ-Q8_0.gguf?download=true) | 0.0421 | 0.1982 | 0.2902 |
| [mxfp4_moe-EHQKOUD-Q6K](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-EHQKOUD-Q6K.gguf?download=true) | 0.2033 | 0.0495 | 0.3582 |
| [mxfp4_moe-EHQKOUD-IQ4NL](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-EHQKOUD-IQ4NL.gguf?download=true) | 0.2323 | 0.2407 | 0.3398 |
| [mxfp4_moe-HQKU-IQ4NL-EOD-MXFP4](./../../resolve/main/Seed-OSS-36B-Instruct-mxfp4_moe-HQKU-IQ4NL-EOD-MXFP4.gguf?download=true) | 0.6098 | 0.0849 | 1.4346 |
| [MXFP4_MOE](./../../resolve/main/Seed-OSS-36B-Instruct-MXFP4_MOE.gguf?download=true) | 3.1000 | 1.5784 | 3.5230 |
---
### Baseline Models (Reference)
### Table - File Size + TPS + Avg Precision Loss
| model_name | file_size_gb | bench_tps | avg_prec_loss |
| ---------- | ------------ | --------- | ------------- |
| BF16 | 67.35 | 11.48 | 0.0000% |
| Q8_0 | 35.78 | 17.77 | 0.0272% |
| Q6_K | 27.63 | 22.95 | 0.2037% |
| Q5_K | 23.84 | 22.04 | 0.2923% |
| IQ4_NL | 19.31 | 27.70 | 1.1076% |
| MXFP4_MOE | 17.90 | 20.46 | 2.7338% |
| Q4_K_M | 20.27 | 26.65 | 2.9161% |
### Table - PPL Columns
| model_name | gen | gen_er | code | code_er | math | math_er |
| ---------- | --- | ------ | ---- | ------- | ---- | ------- |
| BF16 | 6.8872 | 0.1679 | 1.4128 | 0.0095 | 5.4442 | 0.1209 |
| Q8_0 | 6.8866 | 0.1679 | 1.4130 | 0.0095 | 5.4474 | 0.1210 |
| Q6_K | 6.9012 | 0.1685 | 1.4135 | 0.0095 | 5.4637 | 0.1218 |
| Q5_K | 6.9056 | 0.1685 | 1.4169 | 0.0096 | 5.4616 | 0.1213 |
| IQ4_NL | 6.9599 | 0.1703 | 1.4235 | 0.0097 | 5.5264 | 0.1235 |
| MXFP4_MOE | 7.1007 | 0.1728 | 1.4351 | 0.0097 | 5.6360 | 0.1239 |
| Q4_K_M | 7.0970 | 0.1760 | 1.4235 | 0.0098 | 5.7134 | 0.1305 |
### Table - Precision Loss Columns
| model_name | loss_general | loss_code | loss_math |
| ---------- | ------------ | --------- | --------- |
| BF16 | 0.0000 | 0.0000 | 0.0000 |
| Q8_0 | 0.0087 | 0.0142 | 0.0588 |
| Q6_K | 0.2033 | 0.0495 | 0.3582 |
| Q5_K | 0.2672 | 0.2902 | 0.3196 |
| IQ4_NL | 1.0556 | 0.7574 | 1.5099 |
| MXFP4_MOE | 3.1000 | 1.5784 | 3.5230 |
| Q4_K_M | 3.0462 | 0.7574 | 4.9447 |
---
## Support
I’m a solo developer working full time for myself to achieve my dream, pouring nights and weekends into open protocols and tools that I hope make the world a little better. If you chip in, you're helping me keep the lights on while I keep shipping.
[Click here to see ways to support](https://sayou.biz/support) - BTC, Paypal, GitHub sponsors.
Or, just drop a like on the repo :)