test_seed-42_1e-3 / README.md
lweissweiler's picture
End of training
41b8b5d verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - qing-yao/slightly-cleaner-babylm
metrics:
  - accuracy
model-index:
  - name: test_seed-42_1e-3
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: qing-yao/slightly-cleaner-babylm
          type: qing-yao/slightly-cleaner-babylm
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4223382514736395

test_seed-42_1e-3

This model was trained from scratch on the qing-yao/slightly-cleaner-babylm dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0025
  • Accuracy: 0.4223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
6.1409 1.0 1824 4.2361 0.3072
4.0561 2.0 3648 3.7116 0.3490
3.6138 3.0 5472 3.4533 0.3723
3.3863 4.0 7296 3.3195 0.3850
3.2557 5.0 9120 3.2404 0.3930
3.188 6.0 10944 3.1924 0.3973
3.1185 7.0 12768 3.1594 0.4009
3.0753 8.0 14592 3.1404 0.4029
3.047 9.0 16416 3.1230 0.4046
3.0232 10.0 18240 3.1120 0.4060
3.008 11.0 20064 3.1057 0.4074
2.9609 12.0 21888 3.1000 0.4079
2.954 13.0 23712 3.0922 0.4087
2.953 14.0 25536 3.0897 0.4089
2.952 15.0 27360 3.0875 0.4093
2.9527 16.0 29184 3.0876 0.4098
2.9549 17.0 31008 3.0856 0.4099
2.9073 18.0 32832 3.0625 0.4127
2.8458 19.0 34656 3.0216 0.4183
2.7073 19.9894 36460 3.0025 0.4223

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.1