kanishka's picture
End of training
056c02f verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - kanishka/babylm2-rewritten-clean-spacy
metrics:
  - accuracy
model-index:
  - name: opt-babylm2-rewritten-clean-spacy-earlystop-long-bpe_seed-211_1e-3
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: kanishka/babylm2-rewritten-clean-spacy
          type: kanishka/babylm2-rewritten-clean-spacy
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.48244387141804645

opt-babylm2-rewritten-clean-spacy-earlystop-long-bpe_seed-211_1e-3

This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6405
  • Accuracy: 0.4824

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 211
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.0875 1.0 18042 3.1520 0.4227
2.9734 2.0 36084 3.0482 0.4331
2.9048 3.0 54126 2.9848 0.4394
2.8742 4.0 72168 2.9526 0.4430
2.8494 5.0 90210 2.9296 0.4458
2.819 6.0 108252 2.9178 0.4471
2.8034 7.0 126294 2.8993 0.4489
2.7878 8.0 144336 2.8818 0.4511
2.7688 9.0 162378 2.8669 0.4529
2.7492 10.0 180420 2.8508 0.4546
2.7289 11.0 198462 2.8333 0.4566
2.7045 12.0 216504 2.8186 0.4583
2.682 13.0 234546 2.8000 0.4605
2.6581 14.0 252588 2.7817 0.4626
2.6307 15.0 270630 2.7613 0.4649
2.5966 16.0 288672 2.7396 0.4682
2.5502 17.0 306714 2.7122 0.4716
2.4952 18.0 324756 2.6853 0.4752
2.4283 19.0 342798 2.6560 0.4795
2.3386 20.0 360840 2.6405 0.4824

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0